| [1] | M. Tian, Y. Bai, H. Tian, and X. Zhao, “The Chemical Composition and Health-Promoting Benefits of vegetable oils: A review,” Molecules, vol. 28, no. 6393, pp. 1–26, 2023, doi: https://doi.org/ 10.3390/molecules28176393 Academic. |
| [2] | S. Gharby, “Refining Vegetable Oils: Chemical and Physical Refining,” Sci. World J., vol. 2022, no. Table 1, 2022, doi: 10.1155/2022/6627013. |
| [3] | K. A. Zahan and M. Kano, “Biodiesel production from palm oil, its by-products, and mill effluent: A review,” Energies, vol. 11, no. 8, pp. 1–25, 2018, doi: 10.3390/en11082132. |
| [4] | M. Kolář, J. Machotová, M. Hájek, J. Honzíček, T. Hájek, and Š. Podzimek, “Application of Vegetable Oil-Based Monomers in the Synthesis of Acrylic Latexes via Emulsion Polymerization,” Coatings, vol. 13, no. 2, 2023, doi: 10.3390/coatings13020262. |
| [5] | K. Roy, N. Poompiew, A. Pongwisuthiruchte, and P. Potiyaraj, “Application of Different Vegetable Oils as Processing Aids in Industrial Rubber Composites: A Sustainable Approach,” ACS Omega, vol. 6, no. 47, pp. 31384–31389, 2021, doi: 10.1021/acsomega.1c04692. |
| [6] | K. Kondal Reddy, R. Subramanian, T. Kawakatsu, and M. Nakajima, “Decolorization of vegetable oils by membrane processing,” Eur. Food Res. Technol., vol. 213, no. 3, pp. 212–218, 2001, doi: 10.1007/s002170100353. |
| [7] | S. Saleem, G. Muhammad, S. Nasir, A. Bukhari, and M. A. Hussain, “A comprehensive review of phytochemical profile , bioactives for pharmaceuticals, and pharmacological attributes of Azadirachta indica,” Phyther. Res., vol. 32, no. 1, pp. 1–32, 2018, doi: 10.1002/ptr.6076. |
| [8] | J. Devi, “Importance of Azadirachta indica : An Overview,” J. Drug Deliv. Ther. Med., vol. 13, no. 6, pp. 159–165, 2023. |
| [9] | J. F. Islas et al., “An overview of Neem (Azadirachta indica) and its potential impact on health,” J. Funct. Foods, vol. 74, no. August, p. 104171, 2020, doi: 10.1016/j.jff.2020.104171. |
| [10] | E. Sabah, M. Çinar, and M. S. Çelik, “Decolorization of vegetable oils: Adsorption mechanism of β-carotene on acid-activated sepiolite,” Food Chem., vol. 100, no. 4, pp. 1661–1668, 2007, doi: 10.1016/j.foodchem.2005.12.052. |
| [11] | R. S. Pohndorf, T. R. S. Cadaval, and L. A. A. Pinto, “Kinetics and thermodynamics adsorption of carotenoids and chlorophylls in rice bran oil bleaching,” J. Food Eng., vol. 185, pp. 9–16, 2016, doi: 10.1016/j.jfoodeng.2016.03.028. |
| [12] | M. Chandrasekaran and A. H. Bahkali, “Valorization of date palm (Phoenix dactylifera) fruit processing by-products and wastes using bioprocess technology - Review,” Saudi J. Biol. Sci., vol. 20, no. 2, pp. 105–120, 2013, doi: 10.1016/j.sjbs.2012.12.004. |
| [13] | N. Szpisják-Gulyás, A. N. Al-Tayawi, Z. H. Horváth, Z. László, S. Kertész, and C. Hodúr, “Methods for experimental design, central composite design and the Box–Behnken design, to optimise operational parameters: A review,” Acta Aliment., vol. 52, no. 4, pp. 521–537, 2023, doi: 10.1556/066.2023.00235. |
| [14] | T. Kemerli-Kalbaran and M. Ozdemir, “Multi-response optimization of oil extraction from pine nut (Pinus pinea L.) by response surface methodology: Extraction efficiency, physicochemical properties and antioxidant activity,” Lwt, vol. 103, pp. 34–43, 2019, doi: 10.1016/j.lwt.2018.12.067. |
| [15] | K. V. Yatish, H. S. Lalithamba, R. Suresh, and H. R. Harsha Hebbar, “Optimization of bauhinia variegata biodiesel production and its performance, combustion and emission study on diesel engine,” Renew. Energy, vol. 122, pp. 561–575, 2018, doi: 10.1016/j.renene.2018.01.124. |
| [16] | M. Gueye, Y. Richardson, F. T. Kafack, and J. Blin, “High efficiency activated carbons from African biomass residues for the removal of chromium(VI) from wastewater,” J. Environ. Chem. Eng., vol. 2, no. 1, pp. 273–281, 2014, doi: 10.1016/j.jece.2013.12.014. |
| [17] | O. M. of A. AOAC, Association of Official Analytical Chemists, 18th ed. Washington DC., 2005. |
| [18] | D. L. Kouadio, M. Diarra, A. C. Djassou, B. Dibi, B. K. Dongui, and K. Mamadou, “Etude expérimentale de l ’ adsorption du bleu 16 et du méthyle rouge sur du charbon issu de la coque de la cabosse de cacao,” J. Soc. Ouest-Afr. Chim., vol. 051, pp. 17–30, 2022. |
| [19] | S. Mamane et al., “Valorisation des coques de noyaux de Balanites aegyptiaca (L.) Del. et Hyphaene thébaica (L.) Mart. pour l ’ élaboration et car actérisation de Charbons Actifs ; application pour l ’ élimination du chrome,” Eur. Sci. J., vol. 14, no. 21, pp. 195–216, 2018, doi: 10.19044/esj.2018.v14n21p195. |
| [20] | A. Diop, M. Faye, D. Diedhiou, P. Lat, D. Diop, and M. D. Codou, “Valorization of neem , Azadirachta indica A. Juss , seeds hulls as bioadsorbant : Application to the removal of a dye (methylene blue),” Afrique Sci. Rev. Int. des Sci. Technol., vol. 20, no. 6, pp. 100–120, 2022. |
| [21] | M. Saneei, S. A. Hossein Goli, and J. Keramat, “Optimization of oil bleaching parameters, using response surface methodology, for acid-activated sepiolite from Iran,” Clay Miner., vol. 50, no. 5, pp. 639–648, 2015, doi: 10.1180/claymin.2015.050.5.07. |
| [22] | L. Ifa, L. Wiyani, N. Nurdjannah, A. M. T. Ghalib, S. Ramadhaniar, and H. S. Kusuma, “Analysis of bentonite performance on the quality of refined crude palm oil’s color, free fatty acid and carotene: the effect of bentonite concentration and contact time,” Heliyon, vol. 7, no. 6, p. e07230, 2021, doi: 10.1016/j.heliyon.2021.e07230. |
| [23] | I. M. Umweni, I. L. Gold, O. B. Imoisi, V. O. Ezoguan, J. O. Ekhator, and E. C. Orji-Nwosu, “Activation and Characterization of Carbon Obtained From Coconut Shells.,” J. Chem. Soc. Niger., vol. 48, no. 5, pp. 928–935, 2023, doi: 10.46602/jcsn.v48i5.918. |
| [24] | A. Nyamful et al., “Processing and Characterization of Activated Carbon from Coconut Shell and Palm Kernel Shell Waste by H3PO4 Activation,” Ghana J. Sci., vol. 61, no. 2, pp. 91–104, 2021, doi: 10.4314/gjs.v61i2.9. |
| [25] | R. Domga et al., “Optimization of Methylene Blue Adsorption onto Activated Carbon from Bos Indicus Gudali Bones Using a Box Behnken Experimental Design,” Am. J. Chem., vol. 2022, no. 1, pp. 1–9, 2022, doi: 10.5923/j.chemistry.20221201.01. |
| [26] | S. Hazourli, M. Ziati, … A. H.-R. des énergies, and undefined 2007, “Valorisation d’un résidu naturel ligno-cellulosique en charbon actif-exemple des noyaux de dattes,” Researchgate. Net, no. January 2007, pp. 187–192, 2007, [Online]. Available: https://www.researchgate.net/profile/Cherifi- Mouna/publication/228557063_Valorisation_d’un_residu_naturel_ligno-cellulosique_en_charbon_actif- exemple_des_noyaux_de_dattes/links/54105b020cf2d8daaad3bc01/Valorisation-dun-residu-naturel-ligno- cellulosique-en. |
| [27] | E. F. Jaguaribe, L. L. Medeiros, M. C. S. Barreto, and L. P. Araujo, “The performance of activated carbons from sugarcane bagasse, babassu, and coconut shells in removing residual chlorine,” Brazilian J. Chem. Eng., vol. 22, no. 1, pp. 41–47, 2005, doi: 10.1590/S0104-66322005000100005. |
| [28] | I. Tchakala, L. Bawa, G. Djaneye-Boundjou, K. Doni, and P. Nambo, “Optimisation du procédé de préparation des Charbons Actifs par voie chimique (H3PO4) à partir des tourteaux de Karité et des tourteaux de Coton,” Int. J. Biol. Chem. Sci., vol. 6, no. 1, pp. 461–478, 2012, doi: 10.4314/ijbcs.v6i1.42. |
| [29] | P. Dalgaard and L. V. Jørgensen, “Predicted and observed growth of Listeria monocytogenes in seafood challenge tests and in naturally contaminated cold-smoked salmon,” Int. J. Food Microbiol., vol. 40, pp. 105–115, 1998. |
| [30] | D. Ba and I. H. Boyaci, “Modeling and optimization i: Usability of response surface methodology,” J. Food Eng., vol. 78, no. 3, pp. 836–845, 2007, doi: 10.1016/j.jfoodeng.2005.11.024. |
| [31] | J. B. Bike Mbah, B. K. Daniele, E. Marie Charlène, T. T. Larrissa Canuala, E. Antoine, and K. Richard, “Adsorption mechanisms of pigments and free fatty acids in the discoloration of shea butter and palm oil by an acid-activated Cameroonian smectite,” Sci. African, vol. 9, 2020, doi: 10.1016/j.sciaf.2020.e00498. |
| [32] | D. Škevin, T. Domijan, K. Kraljić, J. G. Kljusurić, S. Nederal, and M. Obranović, “Optimization of bleaching parameters for soybean oil,” Food Technol. Biotechnol., vol. 50, no. 2, pp. 199–207, 2012. |
| [33] | L. S. Boroujeni, M. Ghavami, Z. Piravi Vanak, and A. Ghasemi Pirbalouti, “Optimization of sunflower oil bleaching parameters: Using response surface methodology (rsm),” Food Sci. Technol., vol. 40, no. June, pp. 322–330, 2020, doi: 10.1590/fst.10919. |
| [34] | M. Bunthan et al., “Study of Kinetic Model for the Adsorption of β-carotene on Activated Bleaching Earth in the Bleaching of Cambodian Soybean Oil,” J. Food Sci. Nutr. Res., vol. 07, no. 01, pp. 37–43, 2024, doi: 10.26502/jfsnr.2642-110000150. |
| [35] | B. Gil, M. Kim, J. H. Kim, and S. H. Yoon, “Comparative study of soybean oil refining using rice hull silicate and commercial adsorbents,” Food Sci. Biotechnol., vol. 23, no. 4, pp. 1025–1028, 2014, doi: 10.1007/s10068-014-0139-8. |