[1] | Asaithambi, G., Treiber, M., & Kanagaraj, V. (2019). Life Cycle Assessment of Conventional and Electric Vehicles. In International Climate Protection (pp. 161–168). Springer International Publishing. https://doi.org/10.1007/978-3-030-03816-8_21. |
[2] | Bloomberg NEF. (2019). Electric Vehicle Outlook 2019. https://legacy-assets.eenews.net/open_files/assets/2019/05/15/document_ew_02.pdf. |
[3] | Brook, R. D., Rajagopalan, S., Pope, C. A., Brook, J. R., Bhatnagar, A., Diez-Roux, A. V., Holguin, F., Hong, Y., Luepker, R. V., Mittleman, M. A., Peters, A., Siscovick, D., Smith, S. C., Whitsel, L., & Kaufman, J. D. (2010). Particulate Matter Air Pollution and Cardiovascular Disease. Circulation, 121(21), 2331–2378. https://doi.org/10.1161/CIR.0b013e3181dbece1. |
[4] | Campillo-Davo, N., & Rassili, A. (2016). NVH Analysis Techniques for Design and Optimization of Hybrid and Electric Vehicles. Shaker. |
[5] | Commission Oil Independence. (2006). Making Sweden an OIL-FREE Society Commission on Oil Independence. https://gaiapresse.ca/images/UserFiles/File/oilcommissionreport2006.pdf. |
[6] | Dalvi, A. (2024, March 1). EV sales in India jump 42% to 1.67 million in FY2024, 2- and 3Ws, cars and SUVs scale new highs. Autocarpro. |
[7] | de Souza, L. L. P., Lora, E. E. S., Palacio, J. C. E., Rocha, M. H., Renó, M. L. G., & Venturini, O. J. (2018). Comparative environmental life cycle assessment of conventional vehicles with different fuel options, plug-in hybrid and electric vehicles for a sustainable transportation system in Brazil. Journal of Cleaner Production, 203, 444–468. https://doi.org/10.1016/j.jclepro.2018.08.236. |
[8] | Dockery, D. W., Pope, C. A., Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., Ferris, B. G., & Speizer, F. E. (1993). An Association between Air Pollution and Mortality in Six U.S. Cities. New England Journal of Medicine, 329(24), 1753–1759. https://doi.org/10.1056/NEJM199312093292401. |
[9] | e-AMRIT. (n.d.). Types of Electric Vehicles. Government of India. |
[10] | Egede, P., Dettmer, T., Herrmann, C., & Kara, S. (2015). Life Cycle Assessment of Electric Vehicles – A Framework to Consider Influencing Factors. Procedia CIRP, 29, 233–238. https://doi.org/10.1016/j.procir.2015.02.185. |
[11] | Ekins, P. (2018). Final report of the high-Level panel of the European decarbonisation pathways Initiative. |
[12] | Ellingsen, L. A., Majeau-Bettez, G., Singh, B., Srivastava, A. K., Valøen, L. O., & Strømman, A. H. (2014). Life Cycle Assessment of a Lithium-Ion Battery Vehicle Pack. Journal of Industrial Ecology, 18(1), 113–124. https://doi.org/10.1111/jiec.12072. |
[13] | Eriksson, M., & Ahlgren, S. (2013). LCAs of petrol and diesel - A literature review. https://doi.org/https://doi.org/. |
[14] | EUROPEAN COMMISSION DG ENER. (2015). STUDY ON ACTUAL GHG DATA FOR DIESEL, PETROL, KEROSENE AND NATURAL GAS. https://energy.ec.europa.eu/system/files/2015-08/Study %2520on%2520Actual%2520GHG%2520Data%2520Oil%2520Gas%2520Executive%2520Summary_0.pdf. |
[15] | European Environment Agency. (2018). Electric vehicles from life cycle and circular economy perspectives. |
[16] | Franzò, S., & Nasca, A. (2021). The environmental impact of electric vehicles: A novel life cycle-based evaluation framework and its applications to multi-country scenarios. Journal of Cleaner Production, 315. https://doi.org/10.1016/j.jclepro.2021.128005. |
[17] | Hacker, F., Harthan, R., Matthes, F., & Zimmer, W. (2009). Environmental impacts and impact on the electricity market of a large scale introduction of electric cars in Europe-Critical Review of Literature. |
[18] | Hall, D., & Lutsey, N. (2018). Effects of battery manufacturing on electric vehicle life-cycle greenhouse gas emissions. The International Council on Clean Transportation. |
[19] | Hausberger, S. (2010). Fuel Consumption and Emissions of Modern Passenger Cars. |
[20] | Hawkins, T. R., Gausen, O. M., & Strømman, A. H. (2012). Environmental impacts of hybrid and electric vehicles-a review. In International Journal of Life Cycle Assessment (Vol. 17, Issue 8, pp. 997–1014). https://doi.org/10.1007/s11367-012-0440-9. |
[21] | Hawkins, T. R., Singh, B., Majeau‐Bettez, G., & Strømman, A. H. (2013). Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles. Journal of Industrial Ecology, 17(1), 53–64. https://doi.org/10.1111/j.1530-9290.2012.00532.x. |
[22] | Heineke, K., Möller, T., Padhi, A., & Tschiesner, A. (2017). The automotive revolution is speeding up. Mckinsey. |
[23] | Huo, H., Cai, H., Zhang, Q., Liu, F., & He, K. (2015). Life-cycle assessment of greenhouse gas and air emissions of electric vehicles: A comparison between China and the U.S. Atmospheric Environment, 108, 107–116. https://doi.org/10.1016/j.atmosenv.2015.02.073. |
[24] | International Energy Agency. (2018). CO2 Emissions from Fuel Combustion 2018. OECD. https://doi.org/10.1787/co2_fuel-2018-en. |
[25] | J. Martins, F. P. Brito, D. Pedrosa, V. Monteiro, & João L. Afonso. (2013). Real-Life Comparison Between Diesel and Electric Car Energy Consumption. In Grid Electrified Vehicles: Performance, Design and Environmental Impacts (pp. 209–232). Nova Science Publishers. |
[26] | Kazimi, C. (1997). Evaluating the Environmental Impact of Alternative-Fuel Vehicles. Journal of Environmental Economics and Management, 33(2), 163–185. https://doi.org/10.1006/jeem.1997.0984. |
[27] | Kendall, G. (2008). PLUGGED IN THE END OF THE OIL AGE. https://awsassets.wwf.es/downloads/plugged_in___full_report_low_res_final.pdf#. |
[28] | Kukreja, B. (2018a). Life Cycle Analysis of Electric Vehicles. www.transportenvironment.org. |
[29] | Kukreja, B. (2018b). Life Cycle Analysis of Electric Vehicles—Quantifying the Impact. City of Vancouver: Vancouver, BC, Canada. |
[30] | Lah, O. (2017). Decarbonizing the transportation sector: policy options, synergies, and institutions to deliver on a low-carbon stabilization pathway. WIREs Energy and Environment, 6(6). https://doi.org/10.1002/wene.257. |
[31] | Lave, L. B., Cobas-Flores, E., Hendrickson, C. T., & McMichael, F. C. (1995). Using input-output analysis to estimate economy-wide discharges. Environmental Science & Technology, 29(9), 420A-426A. https://doi.org/10.1021/es00009a003. |
[32] | Maffei, L., & Masullo, M. (2014). Electric Vehicles and Urban Noise Control Policies. Archives of Acoustics, 39, 333–341. https://doi.org/10.2478//aoa-2014-0038. |
[33] | Majeau-Bettez, G., Hawkins, T. R., & Strømman, A. H. (2011). Life Cycle Environmental Assessment of Lithium-Ion and Nickel Metal Hydride Batteries for Plug-In Hybrid and Battery Electric Vehicles. Environmental Science & Technology, 45(10), 4548–4554. https://doi.org/10.1021/es103607c. |
[34] | Matijevic, D., & Popovic, V. (2017). Overview of modern contributions in vehicle noise and vibration refinement with special emphasis on diagnostics. FME Transaction, 45(3), 448–458. https://doi.org/10.5937/fmet1703448M. |
[35] | Notter, D. A., Gauch, M., Widmer, R., Wäger, P., Stamp, A., Zah, R., & Althaus, H.-J. (2010). Contribution of Li-Ion Batteries to the Environmental Impact of Electric Vehicles. Environmental Science & Technology, 44(17), 6550–6556. https://doi.org/10.1021/es903729a. |
[36] | Pallas, M.-A., Kennedy, J., Walker, I., Bérengier, M., & Lelong, J. (2015). FOREVER - Noise emission of electric and hybrid electric vehicles. |
[37] | Park, T., Kim, M., Jang, C., Choung, T., Sim, K.-A., Seo, D., & Chang, S. Il. (2018). The Public Health Impact of Road-Traffic Noise in a Highly-Populated City, Republic of Korea: Annoyance and Sleep Disturbance. Sustainability, 10(8), 2947. https://doi.org/10.3390/su10082947. |
[38] | Peng, T., Ou, X., & Yan, X. (2018). Development and application of an electric vehicles life-cycle energy consumption and greenhouse gas emissions analysis model. Chemical Engineering Research and Design, 131, 699–708. https://doi.org/10.1016/j.cherd.2017.12.018. |
[39] | Philippot, M., Alvarez, G., Ayerbe, E., Van Mierlo, J., & Messagie, M. (2019). Eco-Efficiency of a Lithium-Ion Battery for Electric Vehicles: Influence of Manufacturing Country and Commodity Prices on GHG Emissions and Costs. Batteries, 5(1), 23. https://doi.org/10.3390/batteries5010023. |
[40] | Pope, C. A., Burnett, R. T., Thurston, G. D., Thun, M. J., Calle, E. E., Krewski, D., & Godleski, J. J. (2004). Cardiovascular Mortality and Long-Term Exposure to Particulate Air Pollution. Circulation, 109(1), 71–77. https://doi.org/10.1161/01.CIR.0000108927.80044.7F. |
[41] | Pratico, F. G., Briante, P. G., & Speranza, G. (2020). Acoustic Impact of Electric Vehicles. 2020 IEEE 20th Mediterranean Electrotechnical Conference (MELECON), 7–12. https://doi.org/10.1109/MELECON48756.2020.9140669. |
[42] | Ribeiro, B., Brito, F., & Martins, J. (2010, April 12). A Survey on Electric/Hybrid Vehicles. https://doi.org/10.4271/2010-01-0856. |
[43] | Romare, M., & Dahllöf, L. (2017). The Life Cycle Energy Consumption and Greenhouse Gas Emissions from Lithium-Ion Batteries A Study with Focus on Current Technology and Batteries for light-duty vehicles. IVL Swedish Environmental Research Institute. www.ivl.se. |
[44] | Saxena, S., Le Floch, C., MacDonald, J., & Moura, S. (2015). Quantifying EV battery end-of-life through analysis of travel needs with vehicle powertrain models. Journal of Power Sources, 282, 265–276. https://doi.org/10.1016/j.jpowsour.2015.01.072. |
[45] | Soman, A., Kaur, H., Jain, H., & Ganesan, K. (2020). India’s Electric Vehicle Transition: Can Electric Mobility Support India’s Sustainable Economic Recovery Post COVID-19? |
[46] | Spongenberg, H. (2008, August 27). EU states plug in to electric cars. Euobserver. |
[47] | Sreeram, k, Preetha, P. K., & Poornachandran, P. (2019). Electric Vehicle Scenario in India: Roadmap, Challenges and Opportunities. 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), 1–7. https://doi.org/10.1109/ICECCT.2019.8869479. |
[48] | Sullivan, J. L., Burnham, A., & Wang, M. (2010). Energy-consumption and carbon-emission analysis of vehicle and component manufacturing. https://doi.org/10.2172/993394. |
[49] | Tagliaferri, C., Evangelisti, S., Acconcia, F., Domenech, T., Ekins, P., Barletta, D., & Lettieri, P. (2016). Life cycle assessment of future electric and hybrid vehicles: A cradle-to-grave systems engineering approach. Chemical Engineering Research and Design, 112, 298–309. https://doi.org/10.1016/j.cherd.2016.07.003. |
[50] | Timmers, V. R. J. H., & Achten, P. A. J. (2016). Non-exhaust PM emissions from electric vehicles. Atmospheric Environment, 134, 10–17. https://doi.org/10.1016/j.atmosenv.2016.03.017. |
[51] | Transport & Environment. (2018). CO 2 EMISSIONS FROM CARS: the facts. www.transportenvironment.org. |
[52] | Vahan Dashboard. (2024, February). Vahan Dashboard. Vahan Dashboard. |
[53] | Varga, B. O., Sagoian, A., & Mariasiu, F. (2019). Prediction of Electric Vehicle Range: A Comprehensive Review of Current Issues and Challenges. Energies, 12(5), 946. https://doi.org/10.3390/en12050946. |
[54] | Vimmerstedt, L., Hammel, C., & Jungst, R. (1996, December 1). Impact of increased electric vehicle use on battery recycling infrastructure. |
[55] | Vimmerstedt, L. J., Ring, S., & Hammel, C. J. (1995). Current Status of Environmental, Health, and Safety Issues of Lithium Ion Electric Vehicle Batteries. https://www.nrel.gov/docs/legosti/old/7673.pdf. |
[56] | Wang, Q., DeLuchi, M. A., & Sperling, D. (1990). Emission Impacts of Electric Vehicles. Journal of the Air & Waste Management Association, 40(9), 1275–1284. https://doi.org/10.1080/10473289.1990.10466782. |
[57] | Wang, Q., & Santini, D. L. (1992). Magnitude and Value of Electric Vehicle Emissions Reductions for Six Driving Cycles in Four U.S. Cities with Varying Air Quality Problems. https://onlinepubs.trb.org/Onlinepubs/trr/1993/1416/1416-005.pdf. |
[58] | WBCSD. (2004). Mobility 2030: Meeting the challenges to sustainability The Sustainable Mobility Project. https://www.oecd.org/sd-roundtable/papersandpublications/39360485.pdf. |
[59] | World Health Organization. (2005). Health Effects of Transport Related Air Pollution. https://iris.who.int/bitstream/handle/10665/328088/9789289013734-eng.pdf?sequence=3&isAllowed=y. |
[60] | World Health Organization. (2019, January 30). Environmental noise guidelines for the European Region. World Health Organization. |
[61] | Wu, Z., Wang, M., Zheng, J., Sun, X., Zhao, M., & Wang, X. (2018). Life cycle greenhouse gas emission reduction potential of battery electric vehicle. Journal of Cleaner Production, 190, 462–470. https://doi.org/10.1016/j.jclepro.2018.04.036. |
[62] | Yugo, M. (2018). Life-cycle analysis-a look into the key parameters affecting life-cycle CO 2 emissions of passenger cars. Concawe, 27(1), 17–30. https://www.researchgate.net/publication/328073497_Life- cycle_analysis_-_A_look_into_the_key_parameters_affecting_life-cycle_CO2_emissions_of_ passenger_cars/citations. |
[63] | Zackrisson, M., Avellán, L., & Orlenius, J. (2010). Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles – Critical issues. Journal of Cleaner Production, 18(15), 1519–1529. https://doi.org/10.1016/j.jclepro.2010.06.004. |