[1] | M.O. Steinhauser, “Laser-induced shock wave destruction of human tumor cells: experiments and simulations,” Multiscale Modeling and Simulation of Shock Wave-Induced Failure in Materials Science,” Springer Spektrum, Wiesbaden pp. 145-182, 2018. |
[2] | J.J. Rassweiler, T. Knoll, K.U. Kohrmann, J.A. McAteer, J.E. Lingemann, R.O. Cleveland, and C. Chaussy, “Shock wave technology and application: An update,” European Urology, vol. 59, pp. 784–796, 2011. |
[3] | D. Li, A. Pellegrino, A. Hallack, N. Petrinic, A. Jérusalem, and R.O. Cleveland, “Response of Single Cells to Shock Waves and Numerically Optimized Waveforms for Cancer Therapy,” Biophysical journal, vol. 114, no. 6, pp. 1433–1439, 2018. |
[4] | V. Menezes, K. Takayama, T. Ohki, and J. Gopalan, “Laser-ablation-assisted microparticle acceleration for drug delivery,” Applied Physics Letters, vol. 87, pp. 1–3, 2005. |
[5] | T.A. Tominaga, T. Nakagawa, J. Hirano, K. Sato, S.H.R. Kato, Hosseini, and K. Takayama, “Application of underwater shock wave and laser-induced liquid jet to neurosurgery,” Shock Waves, vol. 15, pp. 55–67, 2006. |
[6] | Wang, X., Xu, X., 2001. “Thermoelastic wave induced by laser heating”. Appl. Phys. A 73, pp. 109-114. |
[7] | Sanderson, T., Ume, C. and Jarzynski, J. (1998) Longitudinal Wave Generation in Laser Ultrasonics. Ultrasonics, 35, 553-561. |
[8] | N. Chigarev, P.V. Zinin, L. Ming, G. Amulele, A., Bulou and V. Gusev, “Laser Generation and Detection of Longitudinal and Shear Acoustic Waves in a Diamond Anvil Cell,” Applied Physics Letters, vol. 93, no. 18, 2008. |
[9] | Arrigoni, M., Q., Hu, M., Boustie, L., Berthe, and J., Monchalin, 2008. “B-scan Simulations with Abaqus for Laser Ultrasonic Inspection of Structures”. 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications. Montreal, Canada. |
[10] | Worden K., 2001. “Rayleigh and Lamb Waves - Basic Principles”, Strain, 37 (4), pp. 167-172. |
[11] | R. Hemel, M. S. Alam, M. T. Azam, 2021. “Boundary Effect of Shock Driver to Produce Longitudinal Wave for Effective Shock Wave”, Int. J. Sci. Tech. Res, Vol. 10 (1), pp. 212-216. |
[12] | G.B. Cross, “Investigation of a laser-induced breakdown spark as a near field guide star for aero optic measurements,” Masters Dissertation, University of Notre Dame, 2009. |
[13] | Miklos A, Bozoki Z, Lorincz A (1989) “Picosecond transient reflectance of thin metal films”. J. Appl. Phys. 66(7), pp. 2968–2972. |
[14] | R.A. Kumar and D. Singh, “Interaction of Laser Beam with Micropolar Thermoelastic Solid,” Advances in Physics Theories and applications, vol. 40, pp. 10–16., 2015. |
[15] | Nguyen, H.B. and Giang, L.S. (2015) Comparative Study of Numerical Schemes for Strong Shock Simulation using the Euler Quations. Science and Technology Development, 18, 73-88. |
[16] | Sommerfeld, M. and Muller, H.M. (1988) Experimental and Numerical Studies of Shock Wave Focusing in Water. Experiments in Fluids, 6, 209-216. |
[17] | Daiguji, H. (1988) Fundamentals of Computational Fluid Dynamics. Corona Publishing Co. Ltd., Tokyo. |
[18] | Richardson, J.M., Arons, A.B. and Halverson, R.R. (1947) Hydrodynamic Properties of Sea Water at the Front of a Shock Wave. The Journal of Chemical Physics, 15, 785-794. |
[19] | Muller, M. (2007) Similarity Solution of the Shock Wave Propagation in Water. Applied and Computational Mechanics, 1, 549-554. |