[1] | G.N. Levy, R. Schindel, J.P. Kruth, Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies: state of the art and future perspectives, CIRPAnn-ManufTechn 2003: 52:589–609. |
[2] | J. Holmstrom, J. Partanen, J. Tuomi, M. Walter, Rapid manufacturing in the spare parts supply chain: alternative approaches to capacity deployment, J Manuf Tech Manag 2010: 21:687– 697. |
[3] | S. Hasan, A. Rennie, The application of rapid manufacturing technologies in the spare parts industry. Solid Freeform Fabrication Symposium, University of Texas at Austin, USA, 2008: 584–590. |
[4] | S. H. Huang, P. Liu, A. Mokasdar, L. Hou, Additive manufacturing and its societal impact: a literature review, Int J AdvManufTechnol 2013: 67:1191–1203. |
[5] | H. Lipson, M. Kurman, Fabricated: The New World of 3D Printing, Wiley, Indianapolis 2013. |
[6] | J. R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A. R. Johnson, D. Kelly, K. Chen, R. Pinschmidt, J. P. Rolland, A. Ermoshkin, E. T. Samulski, J. M. DeSimone, Continuous liquid interface production of 3D objects, Science 2015: 20 (347): 1349. |
[7] | J. Glasschroeder, E. Prager, M. F. Zaeh, Powder-bed-based 3D-printing of function integrated parts, Rapid Prototyping Journal, 2015: 21 (2): 207 – 215. |
[8] | http://rpworld.net/cms/index.php/additive-manufacturing/rp-rapid-prototyping/fdm-fused-deposition-modeling-.html |
[9] | H. Lipson, M. Kurman, Fabricated The New World of 3D Printing, Wiley, Indianapolis, 2013. |
[10] | H.B. Hoy, 3D printing: making things at the library, Med Ref Serv Q 2013:32 (1):94–99. |
[11] | X. Cui, T. Boland, D.D. D’Lima, M.K. Lotz, Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul. 2012: 6(2):149–155. |
[12] | J. M. Pearce, Building research equipment with free, open- source hard ware. Science 2012: 337: 1303–1304. |
[13] | S.H. Masood, W.Q. Song, Development of new metal/polymer materials for rapid tooling using Fused deposition modelling, Materials and Design 2004: 25: 587–594. |
[14] | D. Roberson, C. M. Shemelya, E. MacDonald, R. Wicker, Expanding the applicability of FDM-type technologies through materials development, Rapid Prototyping Journal 2015: 21 (2): 137 – 143. |
[15] | L.E. Murr, K.N. Amato, S.J. Li, Y. X. Tian, X.Y. Cheng, S.M. Gaytan, E. Martinez, P.W. Shindo, F. Medina, R.B. Wicker, Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting, Journal of the Mechanical Behavior of Biomedical Materials2011 :4 (7): 1396-1411. |
[16] | L.E. Murr, S.M Gaytan, D.A Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina, R.B. Wicker, Metal fabrication by additive manufacturing using laser and electron beam melting technologies, Journal of Materials Science & Technology, 2012: 28 (1): 1-14. |
[17] | L.E. Murr, S.A. Quinones, S.M. Gaytan, M.I. Lopez, A. Rodela, E.Y. Martinez, D.H. Hernandez, E. Martinez, F. Medina, R.B. Wicker, Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications, Journal of the Mechanical Behavior of Biomedical Materials 2009: 2 (1): 20-32. |
[18] | S.H. Ahn, M. Montero, D. Odell, S. Roundy, P.K. Wright, Anisotropic material properties of fused deposition modeling ABS, Rapid Prototyping Journal,2002: 8 (4) 248-257. |
[19] | A. R. Torrado Perez, D.A. Roberson, R.B. Wicker, Fracture surface analysis of 3D-printed tensile specimens of novel ABS-based materials, Journal of Failure Analysis and Prevention, 2014:14 ( 3) 343-353. |
[20] | J. R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A. R. Johnson, D. Kelly, K. Chen, R. Pinschmidt, J. P. Rolland, A. Ermoshkin, E. T. Samulski, J. M. DeSimone, Continuous liquid interface production of 3D objects, Science, 2015; DOI: 10.1126/science.aaa2397. |
[21] | P. Jacobs, Recent advances in rapid tooling from stereolithography, In: Proceedings of Seventh International Conference on Rapid Prototyping, San Francisco, March 31–April 3, 1997: 338–54. |
[22] | M. Nikzad, S.H. Masood, I. Sbarski, Thermo-mechanical properties of a highly filled polymeric composites for Fused Deposition Modeling, Materials and Design 2011:32: 3448–3456. |
[23] | S.H. Masood W.Q. Song, Thermal characteristics of a new metal/polymer material for FDM rapid prototyping process", Assembly Automation, 2005: 25 (4) 309 – 315. |
[24] | K. Sun, T.S. Wei, B. Y. Ahn, J. Y. Seo, S. J. Dillon, and Jennifer A. Lewis, 3D Printing of Interdigitated Li-Ion Microbattery Architectures, Adv. Mater 2013: 25: 4539–4543. |
[25] | O. Ivanova, C. Williams, T. Campbell, Additive manufacturing (AM) and nanotechnology: promises and challenges", Rapid Prototyping Journal 2013: 19 (5) 353 – 364. |
[26] | J. A. Lewis, J.E. Smay, J. Stuecker, J. Cesarano III, Direct Ink Writing of Three-Dimensional Ceramic Structures, J. Am. Ceram. Soc., 2006: 89 (12) 3599–3609. |
[27] | W. Zhong, F. Li, Z. Zhang, L. Song, Z. Li, Short fiber reinforced composites for fused deposition modeling, Materials Science and Engineering A 2001:301:125–130. |
[28] | H. L. Tekinalp, V. Kunc, G. M. Velez-Garcia, C. E. Duty, L. J. Love, A. K. Naskar, C. A. Blue, S. Ozcan, Highly oriented carbon fiber–polymer composites via additive manufacturing, Composites Science and Technology 2014:105: 144–150. |
[29] | S.E. Bakarich, Three-Dimensional Printing Fiber Reinforced Hydrogel Composites. ACS Appl. Mater. Interfaces 2014: 6.18: 15998-16006. |
[30] | S. K. Rhodes, J. A. Lewis, Phase Behavior, 3-D Structure, and Rheology of Colloidal Microsphere–Nanoparticle Suspensions, J. Am. Ceram. Soc. 2006: 89 (6): 1840–1846. |
[31] | M.L. Shofner, F.J. Rodrı´guez-Macı´as, R. Vaidyanathan, E.V. Barrera, Single wall nanotube and vapor grown carbon fiber reinforced polymers processed by extrusion freeform fabrication, Composites: Part A 2003: 34: 1207–1217. |
[32] | M. L. Shofner, K. Lozano, F. J. Rodrı´guez-Macı´as, E. V. Barrera, Nanofiber-Reinforced Polymers Prepared by Fused Deposition Modeling, Journal of Applied Polymer Science 2003: 89: 3081–3090. |
[33] | J.M. Gardner, G. Sauti, J.W. Kim, R.J. Cano, R.A. Wincheski, C.J. Steller, B.W. Grimsley, D.C. Working, E.J. Stochi, 3D Printing of multifunctional carbon nanotube yarn reinforced components, Additive Manufacturing, 12, Pt-A, October 2016: 38-44. |
[34] | T. A. Campbell, O. S. Ivanova, 3D printing of multifunctional nanocomposites, Nano Today 2013:8: 119—120. |
[35] | S. H.Ahn,M. Montero D. Odell, S. Roundy, P. K. Wright, Anisotropic material properties of fused deposition modeling ABS, Rapid Prototyping Journal 2002: 8 (4): 248 – 257. |
[36] | K. Kanguk, Z.Wei, Q. Xin, A. Chase, R. M. William, C. Shaochen, J.S. Donald, 3D Optical Printing of Piezoelectric Nanoparticle Polymer Composite Materials, ACS Nano 2014: 8 (10): 9799-9806. |
[37] | A. Boschetto, L. Bottini, Accuracy prediction in fused deposition modeling, Int J AdvManufTechnol 2014: 73: 913–928. |
[38] | T. Reiner, N. Carr, R.Mˇech, O. Št’ava, C. Dachsbacher, G. Miller, Dual-Color Mixing for Fused Deposition Modeling Printers, EUROGRAPHICS, 2014: 33 (2): 479-486. |
[39] | I. Durgun, R. Ertan, Experimental investigation of FDM process for improvement of mechanical properties and production cost, Rapid Prototyping Journal 2014: 20 (3): 228 – 235. |
[40] | J. F. Rodríguez James, J. P. Thomas, J.E. Renaud, Mechanical behavior of acrylonitrile butadiene styrene (ABS) fused deposition materials. Experimental investigation, Rapid Prototyping Journal 2001: 7 (3): 148 – 158. |
[41] | D. Drummer, S. Cifuentes-Cuéllar, D. Rietzel, Suitability of PLA/TCP for fused deposition modeling, Rapid Prototyping Journal 2012: 18 (6): 500 – 507. |
[42] | C. R. Rocha, A. R. T. Perez, D. A. Roberson, W.M. Keck, C. M. Shemelya, E. MacDonald, W.M. Keck, R. B. Wicker, Novel ABS-based binary and ternary polymer blends for material extrusion 3D printing, J. Mater. Res. 2014: 29 (17): 1859-1866. |
[43] | A. Bellini, S. Güçeri, Mechanical characterization of parts fabricated using fused deposition modeling, Rapid Prototyping Journal 2003: 9 (4): 252 – 264. |
[44] | A. Armillotta, (2006), Assessment of surface quality on textured FDM prototypes, Rapid Prototyping Journal 2006: 12 (1): 35 – 41. |
[45] | Q. Sun, G.M. Rizvi, C.T. Bellehumeur, P. Gu, Effect of processing conditions on the bonding quality of FDM polymer filaments, Rapid Prototyping Journal 2008: 14: (2):72 – 80. |
[46] | U. Ibrahim, M. A. Irfan, Dynamic crack propagation and arrest in rapid prototyping material, Rapid Prototyping Journal 2012: 18 (2) 154 – 160. |
[47] | D. Espalin, J.A. Ramirez, F. Medina, R. Wicker, Multi-material, multi-technology FDM: exploring build process variations, Rapid Prototyping Journal 2014: 20 (3): 236 – 244. |
[48] | J. O. Hardin, T. J. Ober, A. D. Valentine, J.A. Lewis, Microfluidic Printheads for Multimaterial 3D Printing of Viscoelastic Inks, Advanced Materials 2015:1-7. |
[49] | J. Lee, A. Huang, Fatigue analysis of FDM materials, Rapid Prototyping Journal 2013:19 (4): 291 – 299. |
[50] | M. S. Hossain, D. Espalin, J. Ramos, M. Perez, R. Wicker, Improved Mechanical Properties of Fused Deposition Modeling-Manufactured Parts Through Build Parameter Modifications, Journal of Manufacturing Science and Engineering, Transactions of the ASME, DECEMBER 2014: 136: 061002-1-12. |
[51] | M. R. Karamooz Ravari, M. Kadkhodaei, M. Badrossamay, R. Rezaei, Numerical investigation on mechanical properties of cellular lattice structures fabricated by fused deposition modeling, International Journal of Mechanical Sciences, 88 (2014) 154–161. |
[52] | N. Hill, M. Haghi, Deposition direction-dependent failure criteria for fused deposition modeling polycarbonate, Rapid Prototyping Journal 2014: 20 (3) 221 – 227. |
[53] | N. Volpato, J. A. Foggiatto, D. C. Schwarz, The influence of support base on FDM accuracy in Z, Rapid Prototyping Journal 2014: 20 (3):182 – 191. |
[54] | J.J. Adams, S.C. Slimmer, J.A. Lewis, J.T. Bernhard, 3D-Printed Spherical Dipole Antenna Integrated on Small Rf Node. Electronics Letters 2015:51 (9): 661-662. |
[55] | Landers, Rüdiger, R. Mülhaupt, Desktop manufacturing of complex objects, prototypes and biomedical scaffolds by means of computer‐assisted design combined with computer‐guided 3D plotting of polymers and reactive oligomers, Macromolecular Materials and Engineering 2000: 282 (1) 17-21. |
[56] | Landers, R., et al., Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques, Journal of Materials Science2002: 37 (15): 3107-3116. |
[57] | Landers, Rüdiger, et al., Rapid prototyping of scaffolds derived from thermo reversible hydrogels and tailored for applications in tissue engineering, Biomaterials 2002: 23(23): 4437-4447. |
[58] | Li, Jia Ping, et al. Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: Preparation and in vitro experiment, Biomaterials 2006: 27(8):1223-1235. |
[59] | Moroni, J.R. Lorenzo, D. Wijn, C. A. Van Blitterswijk,3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties, Biomaterials 2006: 27(7): 974-985. |
[60] | Li, J. Ping, et al., Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials 2007: 28(18): 2810-2820. |
[61] | Li, J. Ping, et al., Biological performance in goats of a porous titanium alloy–biphasic calcium phosphate composite, Biomaterials 2007: 28(29): 4209-4218. |
[62] | Moroni, Lorenzo, et al., Anatomical 3D fiber-deposited scaffolds for tissue engineering: designing a neotrachea, Tissue Engineering 2007: 13(10): 2483-2493. |
[63] | El-Ayoubi, Rouwayda, et al., Design and fabrication of 3D porous scaffolds to facilitate cell-based gene therapy, Tissue Engineering Part A 2008: 14(6): 1037-1048. |
[64] | Fedorovich, Natalja E., et al., Three- dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing, Tissue Engineering Part A 2008: 14(1): 127-133. |
[65] | Jukes, Jojanneke M., et al., Critical steps toward a tissue-engineered cartilage implant using embryonic stem cells, Tissue Engineering Part A 2008: 14(1):135-147. |
[66] | Moroni, Lorenzo, et al., 3D Fiber‐Deposited Electrospun Integrated Scaffolds Enhance Cartilage Tissue Formation, Advanced Functional Materials 2008: 18(1): 53-60. |
[67] | Rücker, Martin, et al., Vascularization and biocompatibility of scaffolds consisting of different calcium phosphate compounds, Journal of Biomedical Materials Research Part A 2008: 86(4): 1002-1011. |
[68] | Maher, P. S., et al., Construction of 3D biological matrices using rapid prototyping technology, Rapid Prototyping Journal 2009: 15(3): 204-210. |
[69] | Y. Hyeon, G. H. Kim, Y. H. Koh, A micro-scale surface-structured PCL scaffold fabricated by a 3D plotter and a chemical blowing agent, Journal of Biomaterials Science, Polymer Edition 2010: 21(2): 159-170. |
[70] | De Santis, R., et al., A basic approach toward the development of nanocomposite magnetic scaffolds for advanced bone tissue engineering, Journal of Applied Polymer Science 2011: 122(6): 3599-3605. |
[71] | K.B. Chien, E. Makridakis, R. N. Shah, Three-dimensional printing of soy protein scaffolds for tissue regeneration, Tissue Engineering Part C: Methods 2012: 19(6): 417-426. |
[72] | R. Santis, et al., Advanced composites for hard‐tissue engineering based on PCL/organic–inorganic hybrid fillers: From the design of 2D substrates to 3D rapid prototyped scaffolds, Polymer Composites 2013: 34(9): 1413-1417. |
[73] | C.H. Lee et al, 3D Printed Multiphase Scaffolds for Regeneration of Periodontium Complex, Tissue Engineering Part A 2014:20(7-8): 1342-1351. |
[74] | A. Rajaram, D. Schreyer, D. Chen, Bioplotting Alginate/ Hyaluronic Acid Hydrogel Scafolds with Structural Integrity and Preserved Schwann Cell Viability, 3D Printing and Additive Manufacturing 2014: 1(4): 194-203. |
[75] | P. Sheshadri, R. A. Shirwaiker, Characterization of Material–Process–Structure Interactions in the 3D Bioplotting of Polycaprolactone,3D Printing and Additive Manufacturing 2015: 2(1): 20-31. |
[76] | K. Wang, C. Wu, Z. Qiam, C. Zhang, B. Wang, M. A. Vannan, Dual Material 3D printed metamaterials with tunable mechanical properties for patient tissue mimicking Pt-A, 2016:12: 31-37. |
[77] | B.G. Compton, J.A Lewis, 3D-Printing of Lightweight Cellular Composites Advanced Materials 2014:26: 5930-5935. |
[78] | J. A. Lewis B.Y. Ahn, Device Fabrication: Three-Dimensional Printed Electronics Nature 2015:518: 42-43. |
[79] | S. Hong, D. Sycks, H. F. Chan, S. Lin, G. P. Lopez, F. Guilak, K. W. Leong, X. Zhao, 3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures, Adv. Mater 2015: 1-6. |
[80] | S. Ghosh, S.T. Parker, X. Wang, D.L. Kaplan, J.A. Lewis. Direct-Write Assembly of Microperiodic Silk Fibroin Scaffolds for Tissue Engineering Applications, Advanced Functional Materials 2008:18: 1883-1889. |
[81] | N. Jennifer, H. Shepherd, S. T. Parker, R. F. Shepherd, M. U. Gillette, J. A. Lewis, R. G. Nuzzo, 3D Microperiodic Hydrogel Scaffolds for Robust Neuronal Cultures, Adv. Funct. Mater. 2011: 21: 47–54. |
[82] | L.Xu, S. R. Gutbrod, A. P. Bonifas, Y. Su, M. S. Sulkin, N. Lu, et al., 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium, Nature Communications 2014: 5 (3329). DOI:10.1038/ncomms4329. |
[83] | A. E. Jakus, E. B. Secor, A. L. Rutz, S. W. Jordan, M. C. Hersam, R. N. Shah, Three-Dimensional Printing of High-Content Graphene Scaffolds for Electronic and Biomedical Applications, ACS Nano 2015: 9 (4): 4636–4648. |
[84] | D. B. Kolesky, R. L. Truby, A. S. Gladman, T. A. Busbee, K. A. Homan, J. A. Lewis, 3D Bioprinting of Vascularized, Heterogeneous Cell-Laden Tissue Constructs, Adv. Mater 2014: 26: 3124–3130. |
[85] | S. V Murphy, A. Atala, 3D bioprinting of tissues and organs, Nature Biotechnology 2014:32:773–785. |
[86] | S. Dodds, 3D printing raises ethical issues in medicine, ABC Science, 11th February 2015. |
[87] | M. Gou, X. Qu3, W. Zhu, M. Xiang, J. Yang, K. Zhang, Y. Wei1, S. Chen, Bio-inspired detoxification using 3D-printed hydrogel nanocomposites, Nature Communications May 2014: 8: 5:3774: DOI:10.1038/ncomms4774. |
[88] | T. Q. Huang, X. Qu, J. Liu, S. Chen, 3D printing of biomimetic microstructures for cancer cell migration, Biomed Microdevices 2014: 16:127–132. |
[89] | B.C. Gross, J.L. Erkal, S.Y. Lockwood, et al., Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem. 2014; 86(7): 3240–3253. |