[1] | Dimla, D. E., Application of perceptron neural networks to tool state classification in metal-turning operation. Elsevier, Engineering Applications of Artificial Intelligence, 12, 471–477, 1999. |
[2] | Liu, T. L., Chen, W. Y., Anantharaman, K. S., Intelligent detection of drill wear, Elsevier, Mechanical Systems and Signal Processing, 12, 863–873, 1998. |
[3] | Ezugwua, E. O., Fadarea, D. A., Bonneya, J., Da Silvaa, R. B., Salesa, W. F., Modelling the correlation between cutting and process parameters in highspeed machining of Inconel 718 alloy using an artificial neural network, Elsevier,International Journal of Machine Tools and Manufacture, 45, 1375–1385, 2005. |
[4] | Oxley, P. L. B., Modelling machining processes with a view to their optimization and to the adaptive control of metal cutting machine tools, Elsevier, Robotics and Computer - Integrated Manufacturing, 4, 103-119, 1988. |
[5] | Budak, E., Ozlu, E., Development of a thermomechanical cutting process model for machining process simulations, CIRP Annals-Manufacturing Technology, 57, 97-100, 2008. |
[6] | Szecsi, T., Cutting force modeling using artificial neural networks, Elsevier, Journal of Materials Processing Technology, 92-93, 344- 349, 1999. |
[7] | Zuperl, U., Cus, F., Tool cutting force modeling in ball-end milling using multilevel perceptron, Elsevier, Journal of Materials Processing Technology, 153–154, 268–275,2004. |
[8] | Hao, W., Zhu, X., Li, X., Turyagyenda, G., Prediction of cutting force for self-propelled rotary tool using artificial neural networks, Elsevier, Journal of Materials Processing Technology, 180, 23–29, 2006. |
[9] | Aykut, S., Gölcü, M., Semiz, S., Ergür, H. S., Modeling of cutting forces as function of cutting parameters for face milling of satellite 6 using an artificial neural network, Elsevier, Journal of Materials Processing Technology, 190, 199–203, 2007. |
[10] | Li, X. P., Iynkaran, K., Nee, A. Y. C., A hybrid machining simulator based on predictive machining theory and neural network modeling, Elsever, Journal of Material Processing Technology, 89-90, 224–230, 1999. |
[11] | Özel, T., Karpat, K., Predictive modeling of surface roughness and tools wear in hard turning regression and neural networks, Elsevier, International Journal of Machine Tools and Manufacture, 45, 467-479, 2005. |
[12] | Umbrello, D., Ambrogio, G., Filice, L.,Shivpuri, R., An ANN approach for predicting subsurface residual stresses and the desired cutting conditions during hard turning, Elsevier, Journal of Materials Processing Technology, 189, 143–152, 2007. |
[13] | Umbrello, D., Ambrogio, G., Filice, L., Shivpuri, R., A hybrid finite element method–artificial neural network approach for predicting residual stresses and the optimal cutting conditions during hard turning of AISI 52100 bearing steel,Elsevier, Materials & Design, Advances in production and processing of aluminum, 29, 873–883, 2008. |
[14] | Habak, M., Etude de l'influence de la microstructure et des paramètres de coupe sur le comportement en tournage dur de l'acier à roulement 100Cr6, Ph.D. Thesis ENSAM, CER d'Angers, France, 2006. |
[15] | Maunayri, H., Novel Artificial Neural Networks Force Model for end Milling, Springer, International Journal of Advanced Manufacturing Technology, 18, 693-700, 2001. |
[16] | Haykin, S., Neural Networks : A Comprehensive Foundation, New York, Macmillan, 1994. |
[17] | Asiltürk, I., Çunkaș, M., Modeling and prediction of surface roughness in turning operations using artificial neural network and multiple regression method,Elsevier, Expert Systems with Applications, 38, 5826-5832, 2010. |
[18] | Correa, M., Bielza, C., Pamies-Teixeira, J., Comparison of Bayesian networks and artificial neural networks for quality detection in a machining process, Elsevier, Expert systems with Applications, 36, 7270-7279, 2009. |
[19] | Özel, T., Nadgir, A., Prediction of flank wear by using back propagation neural network modeling when cutting hardened H-13 steel with chamfered and honed CBN tools. Elsevier, International Journal of Machine Tools and Manufacture. 42, 287-297, 2002 |
[20] | Reed, R. D., Neural smithing. MIT Press, Cambridge, 1999. |