[1] | Su Y., Smith J. A. (2021). An atmospheric water balance perspective on extreme rainfall potential for the contiguous US. Water Resources Research, 57, e2020WR028387. https://doi.org/10.1029/2020WR028387. |
[2] | Prein A. F., Rasmussen R. M., Ikeda K., Liu C., Clark M. P., Holland G. J. (2017). The future intensification of hourly precipitation extremes. Nature Climate Change, 7(1), 48–52. https://doi.org/10.1038/nclimate3168. |
[3] | Westra S., Fowler H. J., Evans J. P., Alexander L. V., Berg P., Johnson F., Kendon E. J., Lenderink G., Roberts N. M. (2014). Future changes to the intensity and frequency of short-duration extreme rainfall. Reviews of Geophysics, 52(3), 522–555. https://doi.org/10.1002/2014RG000464. |
[4] | Easterling D. R., Evans J. L., Groisman P. Y., Karl T. R., Kunkel K. E., Ambenje P. (2000). Observed variability and trends in extreme climate events: A brief review. Bulletin of the American Meteorological Society, 8(3), 10. https://doi.org/10.1175/1520-0477(2000)081<0417:OVATIE>2.3.CO;2. |
[5] | BANQUE MONDIALE (2016). Renforcer la résilience de Madagascar face aux changements climatiques pour garantir la sécurité alimentaire et préserver les moyens de subsistance, http://www.banquemondiale.org/fr/news/feature (janvier 2016). |
[6] | AUTORITÉ ROUTIÈRE DE MADAGASCAR (2017). Travaux routiers post-cycloniques suite aux dégâts des cyclones tropicaux Giovanna et Irina sur les routes nationales dans différentes régions de l'île, http://www.arm.mg/arm (mars 2017). |
[7] | Chaperon P., Danloux J., Ferry L. (1993). Fleuves et Rivières de Madagascar. Ed. ORSTOM, Paris (France), (1993) 883 p. |
[8] | Lemmen D. S., Warren F. J., Lacroix J., Bush E. (2008) From Impacts to Adaptation: Canada in a Changing Climate 2007. Government of Canada: Ottawa, ON, Canada, 2008, ISBN: 987-0-662-05176-3, (453 pages). |
[9] | Mailhot A., Duchesne S. (2009). Design criteria of urban drainage infrastructures under climate change. Journal of Water Resources Planning and Management. 2009, Vol. 136, 201–208. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000023. |
[10] | Cheng L., AghaKouchak A. (2014). Nonstationary precipitation intensity-duration-frequency curves for infrastructure design in a changing climate. Scientific Reports, 2014, Vol. 4, 7093. https://doi.org/10.1038/srep07093. |
[11] | Vasiliades L., Galiatsatou P., Loukas, A. (2015). Nonstationary frequency analysis of annual maximum rainfall using climate covariates. Water Resources Management, 2015, Vol. 29, 339–358. https://doi.org/10.1007/s11269-014-0761-5. |
[12] | Hounkpè J., Diekkrüger B., Badou D. F., Afouda A. A. (2015). Non-Stationary Flood Frequency Analysis in the Ouémé River Basin, Benin Republic. Hydrology 2015, 2, 210-229; https://doi.org/10.3390/hydrology2040210. |
[13] | Thiombiano A.N., El Adlouni S., St-Hilaire A., Ouarda T.B., El-Jabi, N. (2017). Nonstationary frequency analysis of extreme daily precipitation amounts in Southeastern Canada using a peaks-over-threshold approach. Theoretical and Applied Climatology, 2017, 129, 413–426. https://doi.org/10.1007/s00704-016-1789-7. |
[14] | De Paola F., Giugni M., Pugliese F., Annis A., Nardi F (2018). GEV Parameter Estimation and Stationary vs. Non-Stationary Analysis of Extreme Rainfall in African Test Cities. Hydrology, 2018, 5, 28. https://dx.doi.org/10.3390/hydrology5020028. |
[15] | Bella N., Dridi H., Kalla M. (2020). Statistical modeling of annual maximum precipitation in Oued El Gourzi Watershed, Algeria. Applied Water Science (2020) 10:94. https://doi.org/10.1007/s13201-020-1175-6. |
[16] | Re M., Barros V.R. (2009). Extreme rainfalls in SE South America. Climate Change 2009, 96, 119–136. https://doi.org/10.1007/s10584-009-9619-x. |
[17] | Katz R.W., Parlange M.B., Naveau, P. (2002). Statistics of extremes in hydrology. Advances in Water Resources. 2002, 25, 1287–1304. https://doi.org/10.1016/S0309-1708(02)00056-8. |
[18] | Aissaoui-Fqayeh I., El-Adlouni S., Ouarda T.B.M.J., St-Hilaire A. (2009). Développement du modèle log-normal non-stationnaire et comparaison avec le modèle GEV non-stationnaire. Hydrological Sciences Journal. 2009, 54, 1141–1156. |
[19] | Tramblay Y., Neppel L., Carreau J., Kenza N. (2013). Non-stationary frequency analysis of heavy rainfall events in Southern France. Hydrological Sciences Journal. 2013, 58, 1–15. https://doi.org/10.1080/02626667.2012.754988. |
[20] | Westra S., Sisson S. A. (2011). Detection of non-stationarity in precipitation extremes using a max-stable process model. Journal of Hydrology, 406(1–2), 119–128. https://doi.org/10.1016/j.jhydrol.2011.06.014. |
[21] | Gilleland, E. and Katz, R. W. (2011). New software to analyze how extremes change over time. Eos, Transactions American Geophysical Union, 11 January, 92, (2), 13–14, https://doi.org/10.1126/science.1151915. |
[22] | Pettitt, A.N. (1979). A Non-Parametric Approach to the Change-Point Problem (1979). Journal of the Royal Statistical Society. Series C (Applied Statistics) 1979, 28, 126–135. https://doi.org/10.2307/2346729. |
[23] | Lopez J., Frances F. (2013). Non-stationary flood frequency analysis in continental Spanish rivers, using climate and reservoir indices as external covariates. Hydrology and Earth System Sciences. 2013, 10, 3103–3142. https://doi.org/10.5194/hess-17-3189-2013. |
[24] | Coles S. (2001). An introduction to statistical modeling of extreme values. Springer Verlag, Berlin (219 pages). ISBN 978-1-84996-874-4 http://dx.doi.org/10.1007/978-1-4471-3675-0. |
[25] | De Haan L., Ferreira A. (2006). Extreme Value Theory - An Introduction. Springer Science + Business Media. ISBN-10:0-387-23946-4 (421 pages). |
[26] | Blanchet J., Ceresetti D., Molinié G., Creutin J. D. (2016). A regional GEV scale-invariant framework for Intensity–Duration–Frequency analysis. Journal of Hydrology 2016, 540, 82–95. https://doi.org/10.1016/j.jhydrol.2016.06.007. |
[27] | Gentilucci M., Rossi A., Pelagagge N., Aringoli D., Barbieri M., Pambianchi G. (2023). GEV Analysis of Extreme Rainfall: Comparing Different Time Intervals to Analyse Model Response in Terms of Return Levels in the Study Area of Central Italy. Sustainability 2023, 15, 11656. https://doi.org/10.3390/su151511656. |
[28] | Sakamoto Y., Ishiguro M., Kitagawa G. (1986). Akaike Information Criterion Statistics. Springer Netherlands, 1986. ISBN 9789027722539 (290 pages). |
[29] | Panagoulia D, Economou P, Caroni C. (2014). Stationary and nonstationary generalized extreme value modelling of extreme precipitation over a mountainous area under climate change. Environmetrics 25: 29–43. https://doi.org/10.1002/env.2252. |
[30] | Jain S., Lall U. (2001). Floods in a changing climate: does the past represent the future? Water Resources Research 37: 3193–3205. https://doi.org/10.1029/2001WR000495. |
[31] | Milly P. C. D., Betancourt J., Falkenmark M., Hirsch R. M., Kundzewicz Z.W., Lettenmaier D. P., Stouffer R. J. (2008) Stationarity is dead: Whither water management? Science 319:573–574. https://doi.org/10.1126/science.1151915. |
[32] | Afuecheta E., Omar M. H. (2021). Characterization of variability and trends in daily precipitation and temperature extremes in the Horn of Africa. Climate Risk Management 32 (2021). https://doi.org/10.1016/j.crm.2021.100295. |
[33] | Nadarajah S. (2005). Extremes of daily rainfall in West Central Florida. Climatic Change, Vol. 69, 325–342. https://doi.org/10.1007/s10584-005-1812-y. |
[34] | Rosbjerc D., Corréa J., Rasmussen P.F. (1992). Justification des formules de probabilité empirique basées sur la médiane de la statistique d'ordre - A defense of the median plotting position. Revue des sciences de l'eau / Journal of Water Science, 5(4), 529–540. https://doi.org/10.7202/705145ar. |
[35] | Cheng L., AghaKouchak A., Gilleland E., Katz R.W. (2014). Non-stationary extreme value analysis in a changing climate. Climatic Change, 2014, 127, 353–369. http://doi.org/10.1007/s10584-014-1254-5. |
[36] | Adlouni S. E. & Ouarda T. B. (2008). Comparaison des méthodes d’estimation des paramètres du modèle GEV non stationnaire. Revue des sciences de l'eau / Journal of Water Science, 21(1), 35–50. https://doi.org/10.7202/017929ar. |
[37] | Lötman L. B. (2021). Estimating return levels for weather events with GAMLSS and extreme value distributions. U.U.D.M. Project Report 2021: 49, Department of Mathematics Uppsala University, http://uu.diva-portal.org. |