[1] | P. Chaperon, J. Danloux and L. Ferry (1993). Fleuves et Rivières de Madagascar. Ed. ORSTOM, Paris (France), 883p. |
[2] | Bloschl, G. (2006). 133: Rainfall-runoff Modeling of Ungauged Catchments. Encyclopedia of Hydrological Sciences. Edited M G Anderson. https://doi.org/10.1002/0470848944.hsa140. |
[3] | Narbondo S., A. Gorgoglione, M. Crisci, C. Chreties (2020). Enhancing Physical Similarity Approach to Predict Runoff in Ungauged Watersheds in Sub-Tropical Regions. Water 2020, 12, 528; https://doi.org/10.3390/w12020528. |
[4] | Comini U.B., D.D. Da Silva, M.C. Moreira, F.F. Pruski (2020). Hydrological modelling in small ungauged catchments. Annals of the Brazilian Academy of Sciences, (2020) 92(2): e20180687 https://doi.org/10.1590/0001-3765202020180687. |
[5] | Petroselli A., R. Piscopia, S. Grimaldi (2020). Design discharge estimation in small and ungauged basins: EBA4SUB framework sensitivity analysis. Journal of Agricultural Engineering, 2020; volume LI: 1040, https://dx.doi.org/0.4081/jae.2020.1040. |
[6] | Rao K.N. (2020). Analysis of surface runoff potential in ungauged basin using basin parameters and SCS‑CN method. Applied Water Science (2020) 10:47. https://doi.org/10.1007/s13201-019-1129-z. |
[7] | Karra K., C. Kontgis, Z. Statman-Weil, J. Mazzariello., M. Mathis, S. Brumby (2021). Global land use/land cover with Sentinel-2 and deep learning. International Geoscience and Remote Sensing Symposium (IGARSS), IEEE, 2021. |
[8] | Ross C.W., L. Prihodko, S. Kumar, W. JI, N.P. Hanan (2018). Global Hydrologic Soil Groups (HYSOGs250m) for Curve Number-Based Runoff Modeling, Oak Ridge, Tennessee, USA, https://doi.org/10.3334/ORNLDAAC/1566. |
[9] | Goddard Earth Sciences Data and Information Services Center (2016), TRMM (TMPA-RT) Near Real-Time Precipitation L3 1 day 0.25 degree × 0.25 degree V7, Edited by Andrey Savtchenko, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC), Accessed: 2021-09-12, https://doi.org/10.5067/TRMM/TMPA/DAY-E/7. |
[10] | Beaudoing H., M. Rodell, NASA/GSFC/HSL (2020), GLDAS Noah Land Surface Model L4 monthly 1.0 × 1.0 degree V2.1, Greenbelt, Maryland, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), Accessed: 2021-09-12, https://doi.org/10.5067/LWTYSMP3VM5Z. |
[11] | Rodell M., P.R. Houser, U. Jambor, J. Gottschalck, K. Mitchell, C. Meng, K. Arsenault, B. Cosgrove, J. Radakovich, M. Bosilovich, J.K. Entin, J.P. Walker, D. Lohmann, D. Toll (2004). The Global Land Data Assimilation System, Bulletin of American Meteorologic Society, 85, pp. 381-394, https://doi.org/10.1175/BAMS-85-3-381. |
[12] | Allen R.G., L.S. Pereira, D. Raes, M. Smith (1998). "Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56", FAO-Food and Agriculture Organization of the United Nations Rome: Rome, Italy. Avalaible on http://www.fao.org/3/x0490e/x0490e00.htm. |
[13] | Lang D., J. Zheng, J. Shi, F. Liao, X. Ma, W. Wang, X. Chen, M. Zhang (2017). A Comparative Study of Potential Evapotranspiration Estimation by Eight Methods with FAO Penman–Monteith Method in Southwestern China. Water 2017, 9, 734. https://dx.doi.org/10.3390/w9100734. |
[14] | Wang D., L. Qin, B. Chang, M. Wang, W. Zhang (2015). "Application of SCS-CN Model in Runoff Estimation", ISM3E: International Symposium on Material, Energy and Environment Engineering. https://doi.org/10.2991/ism3e-15.2015.14. |
[15] | Santikari V.P., L.C. Murdoch (2018). Including effects of watershed heterogeneity in the curve number method using variable initial abstraction. Hydrology and Earth System Sciences, 22, pp. 4725–4743, 2018. https://doi.org/10.5194/hess-22-4725-2018. |
[16] | USDA (1986). "Urban Hydrology for Small Watershed, Technical Release TR-55", 210-VI-TR-55, Second Ed. (June 1986). |
[17] | Ouédraogo W.A.A., J.M. Raude, J.M. Gathenya (2018). Continuous Modeling of the Mkurumudzi River Catchment in Kenya Using the HEC-HMS Conceptual Model: Calibration, Validation, Model Performance, Evaluation and Sensitivity Analysis. Hydrology 2018, 5, 44; https://doi.org/10.3390/hydrology5030044. |
[18] | USACE (2000). "Hydrologic Modeling System HEC-HMS: Technical Reference Manual", Hydrologic Engineering Center (2000). |
[19] | Samuel J., P. Coulibaly, R.A. Metcalfe (2012). Identification of rainfall–runoff model for improved baseflow estimation in ungauged basins. Hydrological Processes, 26, pp 356-366, https://doi.org/10.1002/hyp.8133. |
[20] | Laoucheria F., S. Kechida, M. Chabi (2018). "Estimation of the Parameters of Muskingum Methods for the Prediction of the Flood Depth in the Moudjar River Catchment", International Journal of Urban and Civil Engineering, vol. 12, No: 10. https://doi.org/10.5281/zenodo.1474811. |
[21] | Ehteram M., F.B. Othman, Z.M. Yaseen, H.A. Afan , M.F. Allawi, M.B.A. Malek, A.N. Ahmed, S. Shahid, V.P. Singh, A. El-Shafie (2018). "Improving the Muskingum Flood Routing Method Using a Hybrid of Particle Swarm Optimization and Bat Algorithm", Water, vol. 10 (807), pp.1-21, https://doi.org/10.3390/w10060807. |
[22] | Meenu R., S. Rehana, P.P. Mujumdar (2013). Assessment of hydrologic impacts of climate change in Tunga–Bhadra river basin, India with HEC-HMS and SDSM. Hydrological Processes 27, pp 1572–1589 (2013). https://doi.org/10.1002/hyp.9220. |
[23] | Jeon J.H., K.J. Lim, B.A. Engel (2014). Regional Calibration of SCS-CN L-THIA Model: Application for Ungauged Basins. Water 2014, 6, pp 1339-1359; https://doi.org/10.3390/w6051339. |
[24] | Ahbari A., L. Stour, A. Agoumi, N. Serhir (2018). Estimation of initial values of the HMS model parameters: application to the basin of Bin El Ouidane (Azilal, Morocco). Journal of Materials and Environmental Sciences, 2018, 9 (1), pp. 305-317. https://doi.org/10.26872/jmes.2018.9.1.34. |
[25] | Koneti S., S.L. Sunkara, P.S. Roy (2018). Hydrological Modeling with Respect to Impact of Land-Use and Land-Cover Change on the Runoff Dynamics in Godavari River Basin Using the HEC-HMS Model. ISPRS International Journal of Geo-Information, 2018, 7, 206; https://doi.org/10.3390/ijgi7060206. |
[26] | Adilah N., S. Nuramirah (2019). Estimating flow rate in gauged and ungauged stations in Kuantan river basin using Clark method in HEC-HMS. IOP Conferences Series: Earth and Environmental Science, 244 (2019) 012014, https://doi.org/10.1088/1755-1315/244/1/012014. |
[27] | Caletka M., M.S. Michalková, P. Karásek, P. Fucík (2020). Improvement of SCS-CN Initial Abstraction Coefficient in the Czech Republic: A Study of Five Catchments. Water 2020, 12, 1964; https://doi.org/10.3390/w12071964. |
[28] | Cordova M., G. Carrillo-Rojas, P. Crespo, B. Wilcox, R. Celleri (2015). Evaluation of the Penman-Monteith (FAO 56 PM) Method for Calculating Reference Evapotranspiration Using Limited Data. Mountain Research and Development (MRD), Vol 35 No 3, Aug. 2015, pp. 230–239, https://dx.doi.org/10.1659/MRD-JOURNAL-D-14-0024.1. |
[29] | Moratiel R., R. Bravo, A. Saa, A.M. Tarquis, J. Almorox (2020). Estimation of evapotranspiration by the Food and Agricultural Organization of the United Nations (FAO) Penman–Monteith temperature (PMT) and Hargreaves–Samani (HS) models under temporal and spatial criteria – a case study in Duero basin (Spain). Natural Hazards and Earth System Sciences, 20, 859–875, 2020. https://doi.org/10.5194/nhess-20-859-2020. |
[30] | Alkaeed O., C. Flores, K. Jinno, A. Tsutsumi (2006). "Comparison of Several Reference Evapotranspiration Methods for Itoshima Peninsula Area, Fukuoka, Japan", Memoirs of the Faculty of Engineering, Kyushu University, Vol. 66, No.1, 2006. |
[31] | Hawkins R.H., R. Jiang, D.E. Woodward, A.T. Hjelmfelt, J.E. van Mullem (2003). "Runoff Curve Number Method: Examination of the Initial Abstraction Ratio", Conference paper, https://doi.org/10.1061/40685(2003)308. |