[1] | Aramini JM, Vorobiev SM, Tuberty LM, Janjua H, Campbell ET, Seetharaman J, et al. Montelione GT Structure. 2015; 23(8): 1382-1393. |
[2] | Banerji U, Camidge DR, Verheul HM, Agarwal R, Sarker D, Kaye SB, et al. The first-in-human study of the hydrogen sulfate (Hyd-sulfate) capsule of the MEK1/2 inhibitor AZD6244 (ARRY-142886): a phase I open-label multicenter trial in patients with advanced cancer. Clin Cancer Res. 2010; 16: 1613–1623. |
[3] | Bowyer S, Lee R, Fusi A, Lorigan P. Dabrafenib and its use in the treatment of metastatic melanoma. Melanoma Manag. 2015; 2(3): 199-208. |
[4] | Capozzi M, De Divitiis C, Ottaiano A, von Arx C, Scala S, Tatangelo F, et al. Lenvatinib, a molecule with versatile application: from preclinical evidence to future development in anti-cancer treatment. Cancer Manag Res. 2019; 11: 3847-3860. |
[5] | Chakravarty D, Santos E, Ryder M, Knauf JA, Liao XH, West BL, et al. Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation. J Clin Invest. 2011; 121: 4700–4711. |
[6] | Cho M, Gong J, Frankel P, Synold TW, Lim D, Chung V, et al. A phase I clinical trial of binimetinib in combination with FOLFOX in patients with advanced metastatic colorectal cancer who failed prior standard therapy. Oncotarget. 2017; 8(45): 79750–79760. |
[7] | Corrigan KL, Williamson H, Elliott Range D, Niedzwiecki D, Brizel DM, Mowery YM. Treatment Outcomes in Anaplastic Thyroid Cancer. J Thyroid Res. 2019; 2019: 8218949. |
[8] | Croce L, Coperchini F, Magri F, Chiovato L, Rotondi M. The multifaceted anti-cancer effects of BRAF-inhibitors. Oncotarget. 2019; 10(61): 6623-6640. |
[9] | Glaser SM, Mandish SF, Gill BS, Balasubramani GK, Clump DA, Beriwal S. Anaplastic thyroid cancer: prognostic factors, patterns of care, and overall survival. Head Neck. 2016; 38: E2083–E2090. |
[10] | Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, et al.. Mutations of the BRAF gene in human cancer. Nature. 2002; 417: 949–954. |
[11] | da Rocha Dias S, Salmonson T, van Zwieten-Boot B, Jonsson B, Marchetti S, Schellens JHM, et al. The European Medicines Agency review of vemurafenib (Zelboraf®) for the treatment of adult patients with BRAF V600 mutation-positive unresectable or metastatic melanoma: summary of the scientific assessment of the Committee for Medicinal Products for Human Use. Eur J Cancer. 2013; 49(7): 1654-1661. |
[12] | Degirmenci U, Wang M, Hu J. Targeting Aberrant RAS/RAF/MEK/ERK Signaling for Cancer Therapy. Cells. 2020; 9(1): 198. |
[13] | Dhomen N, Marais R. New insight into BRAF mutations in cancer. Curr Opin Genet Dev. 2007; 17: 31–39. |
[14] | ElMokh O, Taelman V, Radojewski P, Roelli MA, Stoss A, Dumont RA, et al. MEK Inhibition Induces Therapeutic Iodine Uptake in a Murine Model of Anaplastic Thyroid Cancer. J Nucl Med. 2019; 60(7): 917-923. |
[15] | Fagin JA, Wells SAJ. Biologic and clinical perspectives on thyroid Cancer. N Engl J Med. 2016; 375(11): 1054–1067. |
[16] | Fala L. Lenvima (Lenvatinib), a Multireceptor Tyrosine Kinase Inhibitor, Approved by the FDA for the Treatment of Patients with Differentiated Thyroid Cancer. Am Health Drug Benefits. 2015; 8(Spec Feature): 176-179. |
[17] | Falchook GS, Lewis KD, Infante JR, Gordon MS, Vogelzang NJ, DeMarini DJ, et al. Activity of the oral MEK inhibitor trametinib in patients with advanced melanoma: a phase 1 dose-escalation trial. Lancet Oncol. 2012; 13: 782–789. |
[18] | Ferrari SM, Elia G, Ragusa F, et al. Novel treatments for anaplastic thyroid carcinoma. Gland Surg. 2020; 9 (Suppl 1): S28-S42. |
[19] | Flaherty KT, Robert C, Hersey P, Nathan P, Garbe C, Milhem M, et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med. 2012; 367: 107–114. |
[20] | Green P, Schwartz RH, Shell J, Allgauer M, Chong D, Kebebew E. Exceptional response to vemurafenib and cobimetinib in anaplastic thyroid cancer 40 years after treatment for papillary thyroid cancer. Int. J. Endo. Oncol. 2017; 4(4)159–165. |
[21] | Hauschild A, Grob J-J, Demidov LV, Jouary T, Gutzmer R, Millward M, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, Phase III randomised controlled trial. Lancet. 2012; 380(9839): 358–365. |
[22] | Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N, et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell. 2010; 140(2): 209–221. |
[23] | Ho AL, Grewal RK, Leboeuf R, Sherman EJ, Pfister DG, Deandreis D, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med. 2013; 368: 623–632. |
[24] | Hoeflich KP, Merchant M, Orr C, Chan J, Den Otter D, Berry L, et al. Intermittent administration of MEK inhibitor GDC-0973 plus PI3K inhibitor GDC-0941 triggers robust apoptosis and tumor growth inhibition. Cancer Res. 2012; 72(1): 210–9. |
[25] | Hussain MR, Baig M, Mohamoud HS, et al. BRAF gene: From human cancers to developmental syndromes. Saudi J Biol Sci. 2015; 22(4): 359-373. |
[26] | Hunt JL, Tometsko M, LiVolsi VA, et al. Molecular evidence of anaplastic transformation in coexisting well-differentiated and anaplastic carcinomas of the thyroid. Am J Surg Pathol 2003; 27: 1559-64. |
[27] | Kadota M, Tamaki Y, Sekimoto M, et al. Loss of heterozygosity on chromosome 16p and 18q in anaplastic thyroid carcinoma. Oncol Rep 2003; 10: 35-8. |
[28] | Keutgen XM, Sadowski SM, Kebebew E. Management of anaplastic thyroid cancer. Gland Surg. 2015; 4(1): 44-51. |
[29] | King AJ, Arnone MR, Bleam MR, Moss KG, Yang J, Fedorowicz KE, et al. Dabrafenib; preclinical characterization, increased efficacy when combined with trametinib, while BRAF/MEK tool combination reduced skin lesions. PLoS ONE. 2013; 8(7): e67583. |
[30] | Kim A, Cohen MS. The discovery of vemurafenib for the treatment of BRAF-mutated metastatic melanoma. Expert Opin Drug Discov. 2016; 11(9): 907-916. |
[31] | Kitamura Y, Shimizu K, Tanaka S, et al. Allelotyping of anaplastic thyroid carcinoma: frequent allelic losses on 1q, 9p, 11, 17, 19p, and 22q. Genes Chromosomes Cancer 2000; 27: 244-51. |
[32] | Kurata K, Onoda N, Noda S, Kashiwagi S, Asano Y, Hirakawa K, et al. Growth arrest by activated BRAF and MEK inhibition in human anaplastic thyroid cancer cells. Int J Oncol 2016; 49: 2303-8. |
[33] | Lee PA, Wallace E, Marlow A, Yeh T, Marsh V, Anderson D, et al. Preclinical development of ARRY-162, a potent and selective MEK 1/2 inhibitor. Cancer Res. 2010; 70: 2515. |
[34] | Liu F, Yang X, Geng M, Huang M. Targeting ERK, an Achilles' Heel of the MAPK pathway, in cancer therapy. Acta Pharm Sin B. 2018; 8(4): 552-562. |
[35] | Li Z, Zhang Y, Wang R, Zou K, Zou L. Genetic alterations in anaplastic thyroid carcinoma and targeted therapies. Exp Ther Med. 2019; 18(4): 2369-2377. |
[36] | Long GV, Stroyakovskiy D, Gogas H, de Braud F, Larkin J, Garbe C, et al. Combined BRAF and MEK Inhibition versus BRAF Inhibition Alone in Melanoma. N Engl J Med 2014; 371: 1877-88. |
[37] | McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta. 2007; 1773(8): 1263-84. |
[38] | Marten KA, Gudena VK. Use of vemurafenib in anaplastic thyroid carcinoma: a case report. Cancer Biol Ther. 2015; 16(10): 1430-1433. |
[39] | Mazieres J, Cropet C, Montané L, Barlesi F, Souquet PJ, Quantin X, et al. Vemurafenib in non-small-cell lung cancer patients with BRAFV600 and BRAFnonV600 mutations. Ann Oncol. 2020; 31(2): 289-294. |
[40] | Merchant M, Chan J, Orr C, Cheng J, Wang X, Hunsaker T, et al. Combination of the ERK inhibitor GDC-0994 with the MEK inhibitor cobimetinib significantly enhances anti-tumor activity in KRAS and BRAF mutant tumor models. 26 EORTC-NCI-AACR Symposium on Molecular Targets and Cancer Therapeutics; 2014 Nov 18--21; Barcelona, Spain. Eur J Cancer 2014; 50 (Suppl 6): Abstract 387. |
[41] | Molinaro E, Romei C, Biagini A, Sabini E, Agate L, Mazzeo S, Materazzi G, Sellari-Franceschini S, Ribechini A, Torregrossa L, Basolo F, Vitti P, Elisei R. Nat Rev Endocrinol. 2017; 13(11): 644-660. |
[42] | Nagaiah G, Hossain A, Mooney CJ, Parmentier J, Remick SC. Anaplastic thyroid cancer: a review of epidemiology, pathogenesis, and treatment. J Oncol. 2011; 2011: 542358. |
[43] | O'Neill JP, Shaha AR. Anaplastic thyroid cancer. Oral Oncol 2013; 49: 702-6. |
[44] | Podolski A, Castellucci E, Halmos B. Precision medicine: BRAF mutations in thyroid cancer. Precis Cancer Med 2019; 2: 29. |
[45] | Ottaviano M, Giunta EF, Tortora M, Curvietto M, Attademo L, Bosso D, Cardalesi C, Rosanova M, De Placido P, Pietroluongo E, Riccio V, Mucci B, Parola S, Vitale MG, Palmieri G, Daniele B, Simeone E, On Behalf Of Scito Youth. BRAF Gene and Melanoma: Back to the Future. Int J Mol Sci. 2021; 22(7): 3474. |
[46] | Park E, Rawson S, Li K, Kim BW, Ficarro SB, Pino GG, et al. Architecture of autoinhibited and active BRAF-MEK1-14-3-3 complexes. Nature. 2019; 575(7783): 545-550. |
[47] | Rahmani M, Davis EM, Bauer C, Dent P, Grant S. Apoptosis induced by the kinase inhibitor BAY 43-9006 in human leukemia cells involves down-regulation of Mcl-1 through inhibition of translation. J Biol Chem. 2005; 280: 35217–35227. |
[48] | Ragazzi M, Ciarrocchi A, Sancisi V, Gandolfi G, Bisagni A, Piana S. Update on anaplastic thyroid carcinoma: morphological, molecular, and genetic features of the Most aggressive thyroid Cancer. Int J Endocrinol. 2014; 2014: 790834. |
[49] | Rashid M, Agarwal A, Pradhan R, et al. Genetic Alterations in Anaplastic Thyroid Carcinoma. Indian J Endocrinol Metab. 2019; 23(4): 480-485. |
[50] | Reddi H, Kumar A, Kulstad R. Anaplastic thyroid cancer – an overview of genetic variations and treatment modalities. Advances in Genomics and Genetics. 2015; 5: 43-52. |
[51] | Ramos JW. The regulation of extracellular signal-regulated kinase (ERK) in mammalian cells. Int J Biochem Cell Biol. 2008; 40: 2707–2719. |
[52] | Saini S, Tulla K, Maker AV, Burman KD, Prabhakar BS. Therapeutic advances in anaplastic thyroid cancer: a current perspective. Mol Cancer. 2018; 17(1): 154. |
[53] | Sanchez JN, Wang T, Cohen MS. BRAF and MEK Inhibitors: Use and Resistance in BRAF-Mutated Cancers. Drugs. 2018; 78(5): 549-566. |
[54] | Sarkisian S, Davar D. MEK inhibitors for the treatment of NRAS mutant melanoma. Drug Des Devel Ther. 2018; 12: 2553-2565. |
[55] | Scheible H, Kraetzer F, Marx A, Johne A, Wimmer E. Metabolism of the MEK1/2 Inhibitor Pimasertib Involves a Novel Conjugation with Phosphoethanolamine in Patients with Solid Tumors. Drug Metab Dispos. 2017; 45(2): 174-182. |
[56] | Seghers AC, Wilgenhof S, Lebbé C, Neyns B. Successful rechallenge in two patients with BRAF-V600-mutant melanoma who experienced previous progression during treatment with a selective BRAF inhibitor. Melanoma Res. 2012; 22: 466–472. |
[57] | Sherman SI. Targeted therapies for thyroid tumors. Mod Pathol. 2011; 24 Suppl 2: S44–S52. |
[58] | Shin MH, Kim J, Lim SA, Kim J, Lee KM. Current Insights into Combination Therapies with MAPK Inhibitors and Immune Checkpoint Blockade. Int J Mol Sci. 2020; 21(7): 2531. |
[59] | Simões-Pereira J, Capitão R, Limbert E, Leite V. Anaplastic Thyroid Cancer: Clinical Picture of the Last Two Decades at a Single Oncology Referral Centre and Novel Therapeutic Options. Cancers (Basel). 2019; 11(8): 1188. |
[60] | Smallridge RC, Ain KB, Asa SL, et al. American Thyroid Association guidelines for management of patients with anaplastic thyroid cancer. Thyroid 2012; 22: 1104-39. |
[61] | Subbiah V, Baik C, Kirkwood JM. Clinical Development of BRAF plus MEK Inhibitor Combinations. Trends Cancer. 2020; 6(9): 797-810. |
[62] | Subbiah V, Kreitman RJ, Wainberg ZA, Yong Cho J, Schellens JHM, Soria JC, et al. Dabrafenib and Trametinib Treatment in Patients With Locally Advanced or Metastatic BRAF V600-Mutant Anaplastic Thyroid Cancer. J Clin Oncol. 2018; 36(1): 7-13. |
[63] | Tahara M, Kiyota N, Yamazaki T, Chayahara N, Nakano K, Inagaki L, et al. Lenvatinib for Anaplastic Thyroid Cancer. Front Oncol. 2017; 7: 25. |
[64] | Tiedje V, Stuschke M, Weber F, Dralle H, Moss L, Führer D. Anaplastic thyroid carcinoma: review of treatment protocols. Endocr Relat Cancer. 2018; 25(3): R153-R161. |
[65] | von Richter O, Massimini G, Scheible H, Udvaros I, Johne A. Pimasertib, a selective oral MEK1/2 inhibitor: absolute bioavailability, mass balance, elimination route, and metabolite profile in cancer patients. Br J Clin Pharmacol. 2016; 82(6): 1498-1508. |
[66] | Wang L, Leite de Oliveira R, Huijberts S, Bosdriesz E, Pencheva N, Brunen D, et al. An Acquired Vulnerability of Drug-Resistant Melanoma with Therapeutic Potential. Cell. 2018; 173: 1413–1425. |
[67] | Wiseman SM, Masoudi H, Niblock P, et al. Anaplastic thyroid carcinoma: expression profile of targets for therapy offers new insights for disease treatment. Ann Surg Oncol. 2007; 14: 719–729. |
[68] | Zhao Y, Adjei A. The clinical development of MEK inhibitors. Nat Rev Clin Oncol. 2014; 11: 385–400. |
[69] | Ziogas IA, Tsoulfas G. Evolving role of Sorafenib in the management of hepatocellular carcinoma. World J Clin Oncol. 2017; 8(3): 203-213. |