[1] | Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E. and Forman, D., 2011, Global cancer statistics. CA Cancer J Clin. 61: 69–90. |
[2] | Pedroza-Torres, A., López-Urrutia, E., García-Castillo, V., Jacobo-Herrera, N., Herrera L.A. and Peralta-Zaragoza, O., 2014, MicroRNAs in Cervical Cancer: Evidences for a miRNA Profile Deregulated by HPV and Its Impact on Radio-Resistance. Molecules, 19: 6263-6281;doi:10.3390/molecules19056263. |
[3] | Tewar, K.S. and Disaia P.J., 2002, Radiation therapy for gynaecological cancer. Journal Obstetric Gynaecol. 28: 123-140. |
[4] | Parkin, D.M., Pisani, P. and Ferlay, J., 1999, Estimate of worldwide incidence of 25 major cancers in 1990. Int. J. Cancer 80: 827-841. |
[5] | Schoell, W.M., Janicek, M.F. and Mirhashemi, R., 1999, Epidemology and biology of cervical cancer. Surg. Oncol. 16: 203-211. |
[6] | Gharoro, E.P., Obed, H.O. and Okpere, E.E., 1999, Carcinoma of the cervix: aspects of clinical presentation and management in Benin City. Int. J. Gynaecol. Obstetrics. 67: 51-53. |
[7] | Bartel, D.P., 2004, MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 116: 281–297. |
[8] | Liu. L., Yu, X., Guo, X., Tian, Z., Su, M. and Long, Y., 2012, miR-143 is downregulated in cervical cancer and promotes apoptosis and inhibits tumor formation by targeting Bcl-2. Mol. Med. Rep. 5: 753-760. |
[9] | Zhang, H., Chen, Z., Wang, X., Huang, Z., He, Z. and Chen, Y., 2013, Long non-coding RNA: a new player in cancer. J. Hematol Oncol. 6: 37. |
[10] | Hassan, O., Ahmad, A., Sethi, S. and Sarkar, F.H., 2012. Recent updates on the role of microRNAs in prostate cancer. J. Hematol. Oncol. 5:9. |
[11] | Martinez, I., Gardiner, A.S., Board, K.F., Monzon, F.A., Edwards, R.P. and Khan, S.A., 2008, Human papillomavirus type 16 reduces the expression of microRNA-218 in cervical carcinoma cells. Oncogene, 27(18): 2575-82. doi:10.1038/sj.onc.1210919. |
[12] | Jazdzewski, K., Murray E.L., Franssila K., Jarzab, B., Schoenberg D.R. and de la Chapelle A., 2008, Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci U S A, 105 (20): 7269-74. Doi:10.1073/pnas.0802682105. |
[13] | Wang, X., Tang, S. and Le, S-Y., 2008, Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One, 3(7): e2557. |
[14] | Li, B.H., Zhou, J.S., Ye, F., Cheng, X.D., Zhou, C.Y. and Lu, W.G., 2011, Reduced miR-100 expression in cervical cancer and precursors and its carcinogenic effect through targeting PLK1 protein. European J. Cancer, 47: 2166–2174. |
[15] | Li, B., Hu, Y., Ye, F., Li, Y., Lv, W. and Xie, X., 2010, Reduced miR-34a expression innormal cervical tissues and cervical lesions with high-risk human papillomavirus infection. Int. J. Gynecol Cancer, 20(4): 597-604. |
[16] | Wang, X., Meyers, C., Guo, M. and Zheng, Z.M., 2011, Upregulation of p18Ink4c expression by oncogenic HPV E6 via p53-miR-34a pathway. International Journal of Cancer, 129, 1362–1372. doi:10.1158/ 0008-5472.CAN-06-0561. |
[17] | Volinia, S., Calin, G.A., Liu, C.G., Ambs, S. and Cimmino, A., 2006, A microRNA expression signature of human solid tumors defines cancer gene targets. Proceedings of the National Academy of Sciences USA. 103: 2257-2261. |
[18] | Lui, W.O., Pourmand, N., Patterson, B.K. and Fire, A., 2007, Patterns of known and novel small RNAs in human cervical cancer. Cancer Research. 67(13): 6031-43. |
[19] | Pereira, P.M., Marques, J.P., Soares, A.R., Carreto, L. and Santos, M.A.S., 2010, MicroRNA expression variability in human cervical tissues. PLoS One, 5(7): e11780. |
[20] | Villegas-Ruiz, V., Juárez-Méndez, S., Pérez-González, O.A., Arreola, H., Paniagua-García, L. and Parra-Melquiadez, M., 2014, Heterogeneity of microRNAs expression in cervical cancer cells: over-expression of miR-196a. Int. J. Clin. Exp. Pathol 7(4): 1389-1401. |
[21] | Rao, Q., Zhou, H., Peng, Y., Li, J. and Lin, Z., 2012, Aberrant microRNA expression in human cervical carcinomas. Med. Oncol. 29(2): 1242-8. |
[22] | Lee, J.W., Choi, C.H., Choi, J.J., Park, Y.A., Kim, S.J. and Hwang, S.Y., 2008, Altered MicroRNA expression in cervical carcinomas. Clin Cancer Res, 14: 2535-25. |
[23] | Dreher, A., Rossing, M. and Kaczkowski, B., 2011. Differential expression of cellular microRNAs in HPV 11, -16, and -45 transfected cells. Biochemical and Biophysical Research Communications. 412(1): 20-25. |
[24] | Muralidhar, B., Goldstein, L.D., Ng, G., Winder, D.M., Palmer, R.D. and Gooding, E.L., 2007, Global microRNA profiles in cervical squamous cell carcinoma depend on Drosha expression levels. J. Pathol. 212: 368-377. |
[25] | Greco, D., Kivi, N., Qian, K., Leivonen, S.K., Auvinen, P. and Auvinen, E., 2011, Human papillomavirus 16 E5 modulates the expression of host microRNAs. PLoS One, 6(7): e21646. doi:10.1371/journal.pone.0021646. |
[26] | Hu, X., Schwarz, J.K., Lewis, J.S., Huettner, P.C., Rader, J.S. and Deasy, J.O., 2010, A microRNA expression signature for cervical cancer prognosis. Cancer Res. 70: 1441–1448. |
[27] | Zhao, S., Yao, D., Chen, J. and Ding, N., 2013, Circulating miRNA-20a and miRNA-203 for screening lymph node metastasis in early stage cervical cancer. Genetics Test Molecular Biomarkers. 17: 631–636. |
[28] | Li, Y., Wang, F., Xu, J., Ye, F., Shen, Y. and Zhou, J., 2011b, Progressive miRNA expression profiles in cervical carcinogenesis and identification of HPV-related target genes for miR-29. J. Pathol. 224: 484–495. |
[29] | Bosch, F.X., Lorincz, A., Munoz, N., Meijer C.J. and Shah, K.V., 2002, The causal relation between human papillomavirus and cervical cancer. J. Clin Pathol. 55(4): 244–265. |
[30] | Munoz, N., Bosch, F.X., de Sanjose, S., Tafur, L., Izarzugaza, I. and Gili, M., 1992, The causal link between human papillomavirus and invasive cervical cancer: a population-based case–control study in Colombia and Spain. Int J. Cancer. 52(5): 743–749. |
[31] | Walboomers, J.M., Jacobs, M.V., Manos, M.M., Bosch, F.X., Kummer, J.A. and Shah, K.V., 1999, Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 189(1): 12–19. |
[32] | Narisawa-Saito, M. and Kiyono, T., 2007, “Basic mechanisms of highrisk human papillomavirus-induced carcinogenesis: roles of E6 and E7 proteins,” Cancer Sci. 98(10): 1505–1511. |
[33] | Hildesheim, A., Mann, V., Brinton, L.A., Szklo, M., Reeves, W.C. and Rawls, W.A., 1991, Herpes simplex virus type 2: a possible interaction with Human Papillomavirus types 16/18 in the development of invasive cervical cancer. Int. J. Cancer. 49: 335–340. |
[34] | Di Luca, D., Costa, S., Monini, P., Rotola, A., Terzani, P. and Savioli, A., 1989, Search for human papillomavirus, herpes simplex virus, and c-myc oncogene in human genital tumors. Int. J. Cancer. 43: 570–577. |
[35] | Liu, C., Lin, J., Li, L., Zhang Y., Chen, W., Cao, Z. et al. 2015, HPV16 early gene E5 specifically reduces miRNA-196a in cervical cancer Cells. Scientific Reports 5: 7653, DOI: 10.1038/srep07653. www.nature.com/scientificreports. |
[36] | Yao, T., Rao, Q., Liu, L. et al., 2013, “Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in cervical cancer,” J. Virol. vol. 10, article 175. |
[37] | Wilting, S.M., Verlaat, W., Jaspers, A. et al., 2013, “Methylation mediated transcriptional repression of microRNAs during cervical carcinogenesis,” Epigenetics, 8: 220–228. |
[38] | Choi, B., Kim, H.A., Suh, C.H., Byun, H.O., Jung, J.Y. and Sohn, S., 2015, The Relevance of miRNA-21 in HSV-Induced Inflammation in a Mouse Model. Int. J. Mol. Sci. 16: 7413-7427. doi:10.3390/ijms16047413. |
[39] | Jian-Yi, L., Shi, J., Wen-Hai, Z., Yang, Z., Ye, K. and Pi-Song, L., 2013, Differential Distribution of microRNAs in Breast Cancer Grouped by Clinicopathological Subtypes. Asian Pacific J Cancer Prev. 14 (5): 3197-3203. Doi:10.7314/APJCP.2013.14.5.3197. |
[40] | Ji, Q., Hao, X., Meng, Y., Zhang, M., Desano, J. and Fan, D., 2008, Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastriccancer tumorspheres. BMC Cancer, 8: 266. Doi: 10.1186/1471-2407-8-266. |
[41] | Ji, Q., Hao, X., Zhang M., Tang, W., Yang, M. and Li, L., 2009, MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One. 4(8): e6816. Doi: 10.1371/journal.pone.0006816. |
[42] | Gregory, P.A., Bert, A.G., Paterson, E.L., Barry, S.C., Tsykin, A. and Farshid, G., 2008, The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 10: 593–601. |
[43] | Zhao, S., Yao, D., Chen, J., Ding, N. and Ren, F., 2015, MiR-20a Promotes Cervical Cancer Proliferation and Metastasis In Vitro and In Vivo. PLoS ONE 10(3), e0120905. doi:10.1371/journal. pone.0120905. |
[44] | Wang, F., Li, Y., Zhou, J., Xu, J., Peng, C. and Ye, F., 2011, miR-375 is down-regulated in squamous cervical cancer and inhibits cell migration and invasion via targeting transcription factor SP1. Am. J. Pathol. 179: 2580–2588. |
[45] | Wang, L., Wang, Q., Li, H.L. and Han, L.Y., 2013, Expression of miR-200a, miR-93, metastasis-related gene RECK and MMP2/MMP9 in human cervical carcinoma–relationship with prognosis. Asian Pac J Cancer Prev. 14: 2113–2118. |
[46] | Luo, M., Shen, D., Zhou, X., Chen, X. and Wang, W., 2013, MicroRNA-497 is a potential prognostic marker in human cervical cancer and functions as a tumor suppressor by targeting the insulin-like growth factor 1 receptor. Surg. 153: 836–847. |
[47] | Shen, S.N., Wang, L.F., Jia, Y.F., Hao, Y.Q., Zhang, L. and Wang H., 2013, Upregulation of microRNA-224 is associated with aggressive progression and poor prognosis in human cervical cancer. Diagn Pathol. 8: 69. |
[48] | Lee, H., Kim, K.R., Cho, N.H., Hong, S.R., Jeong, H. and Kwon, S.Y., 2014, MicroRNA expression profiling and Notch1 and Notch2 expression in minimal deviation adenocarcinoma of uterine cervix. World J Surg. Oncol. 2014, 12:334. http://www.wjso.com/content/12/1/334 |
[49] | Lengauer, C., Kinzler, K.W. and Vogelstein, B., 1998, Genetic instabilities in human cancers. Nature. 396: 643–9. |
[50] | Cimini, D., 2008, Merotelic kinetochore orientation, aneuploidy, and cancer. Biochim Biophys Acta. 1786: 32–40. |
[51] | Walther, A., Houlston, R. and Tomlinson, I., 2008, Association between chromosomal instability and prognosis in colorectal cancer: a meta-analysis. Gut. 57: 941–50. |
[52] | Florl AR, Schulz WA. Chromosomal instability in bladder cancer. Arch Toxicol. 2008, 82, 173–82. |
[53] | M’Kacher, R., Andreoletti, L., Flamant, S., Milliat, F., Girinsky, T. and Dossou, J., 2010, JC human polyomavirus is associated to chromosomal instability in peripheral blood lymphocytes of Hodgkin’s lymphoma patients and poor clinical outcome. Annals Oncol. 21: 826–32. |
[54] | Van de Wetering, C.I., Horne, M.C. and Knudson, C.M., 2007, Chromosomal instability and supernumerary centrosomes represent precursor defects in a mouse model of T-cell lymphoma. Cancer Res. 67: 8081–8. |
[55] | Lentini, L., Amato, A., Schillaci, T. and Di Leonardo, A., 2007, Simultaneous Aurora-A/STK15 overexpression and centrosome amplification induce chromosomal instability in tumour cells with a MIN phenotype. BMC Cancer. 7: 212. |
[56] | Silkworth, W.T., Nardi, I.K., Scholl, L.M. and Cimini, D., 2009, Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells. PLoS One. 4: e6564. |
[57] | Ganem, N.J., Godinho, S.A. and Pellman, D. A., 2009, mechanism linking extra centrosomes to chromosomal instability. Nature. 460: 278–82. |
[58] | Cahill, D.P., Lengauer, C., Yu, J., Riggins, G.J., Willson, J.K. and Markowitz, S.D., 1998, Mutations of mitotic checkpoint genes in human cancers. Nature, 392, 300–3. |
[59] | Michel, L.S., Liberal, V., Chatterjee, A., Kirchwegger, R., Pasche, B. and Gerald, W., 2001, MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature. 409: 355–9. |
[60] | Tusell, L., Pampalona, J., Soler, D., Frias, C. and Genesca, A., 2010, Different outcomes of telomere-dependent anaphase bridges. Biochem Soc Trans, 38: 1698–703. |
[61] | Rajagopalan, H., Jallepalli, P.V., Rago, C., Velculescu, V.E., Kinzler K.W. and Vogelstein B., 2004, Inactivation of hCDC4 can cause chromosomal instability. Nature. 428: 77–81. |
[62] | Sotillo, R., Hernando, E., Diaz-Rodriguez, E., Teruya-Feldstein, J., Cordon-Cardo, C., and Lowe, S.W., 2007, Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell. 11: 9–23. |
[63] | Hernando, E., Nahle, Z., Juan, G., Diaz-Rodriguez, E., Alaminos, M. and Hemann, M., 2004, Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control. Nature. 430: 797–802. |
[64] | Zhang, N., Ge, G., Meyer, R., Sethi, S., Basu, D., Pradhan, S., et al., 2008, Overexpression of Separase induces aneuploidy and mammary tumorigenesis. Proc Natl Acad Sci U S A, 105: 13033–8. |
[65] | Barber, T.D., McManus, K., Yuen, K.W., Reis, M., Parmigiani G, Shen D, et al., 2008, Chromatid cohesion defects may underlie chromosome instability in human colorectal cancers. Proc Natl Acad Sci U S A., 105, 3443–8. |
[66] | Bakhoum, S.F., Thompson, S.L., Manning A.L. and Compton, D.A., 2009a, Genome stability is ensured by temporal control of kinetochore-microtubule dynamics. Nat Cell Biol, 11, 27–35. |
[67] | Bakhoum, S.F., Genovese, G. and Compton, D.A., 2009, Deviant kinetochore microtubule dynamics underlie chromosomal instability. Curr Biol. 19: 1937–42. |
[68] | Cimini, D., Wan, X., Hirel, C.B. and Salmon, E.D., 2006, Aurora kinase promotes turnover of kinetochore microtubules to reduce chromosome segregation errors. Curr Biol. 16: 1711–8. |
[69] | How, C., Bruce, J., So, J., Pintilie, M., Haibe-Kains, B. and Hui, A., 2015, Chromosomal instability as a prognostic marker in cervical cancer. BMC Cancer, 15:361 Doi 10.1186/s12885-015-1372-0. |
[70] | Liu, X. C., Peng, X.L., Zheng, J., Wang and Qin, Y.W., 2009, “MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo,” Lung Cancer, 66: 169–175. |
[71] | Chang, T.C., Wentzel, E.A., Kent, O.A., et al., 2007, Transactivation of miR- 34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell. 26(5): 745-52. |
[72] | He, L., He, X., Lim, L.P., et al., 2007, A microRNA component of the p53 tumour suppressor network. Nature. 447(7148): 1130-4. |
[73] | Raver-Shapira, N., Marciano, E., Meiri, E., et al., 2007, Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol. Cell. 26(5): 731-43. |
[74] | Cameron, J.E., Yin, Q., Fewell, C., et al., 2008, Epstein-Barr virus latent membrane protein 1 induces cellular MicroRNA miR-146a, a modulator of lymphocyte signaling pathways. J. Virol. 82(4): 1946-58. |
[75] | Motsch, N., Pfuhl, T., Mrazek, J., Barth, S. and Grasser, F.A., 2007, Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) induces the expression of the cellular microRNA miR-146a. RNA Biol. 4(3): 131-7. |
[76] | Taganov, K.D., Boldin, M.P., Chang, K.J. and Baltimore, D. 2006, NF-kappaB dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA. 103(33): 12481-6. |
[77] | Lin, S.L., Chiang, A., Chang, D., Ying, S.Y., 2008, Loss of mir-146a function in hormone-refractory prostate cancer. RNA. 14(3): 417-24. |
[78] | He, H., Jazdzewski, K., Li, W., et al., 2005, The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA. 102(52): 19075-80. |
[79] | Resnick, K.E., Alder, H., Hagan, J.P., Richardson, D.L., Croce, C.M. and Cohn, D.E., 2009, The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform. Gynecol Oncol 2009, 112:55–59. |
[80] | Laios, A., O'Toole, S., Flavin, R., Martin, C., Kelly, L. and Ring, M., 2008, Potential role of miR-9 and miR-223 in recurrent ovarian cancer. Mol Cancer. 7:35. doi:10.1186/1476-4598-7-35. |
[81] | Lopez, A.J.G., Lopez, J.A. Multistep Model of Cervical Cancer: Participation of miRNAs and Coding Genes. Int. J. Mol. Sci. 2014, 15, 15700-15733; doi:10.3390/ijms150915700. |