[1] | Abdel-Fattah, G. M., & Asrar, A.-W. A. (2012). Arbuscular mycorrhizal fungal application to improve growth and tolerance of wheat (Triticum aestivum L.) plants grown in saline soil. Acta Physiologiae Plantarum, 34(1), 267–277. |
[2] | Al-Karaki, G., McMichael, B., & Zak, J. (2004). Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza, 14(4), 263–269. |
[3] | Altuhaish, A. A. K., & Yahya, S. (2014). Field adaptation of some introduced wheat (Triticum aestivum L.) Genotypes in two altitudes of tropical agro-ecosystem environment of Indonesia. Hayati Journal of Biosciences, 21(1), 31–38. |
[4] | Augé, R. M., & Moore, J. L. (2005). Arbuscular mycorrhizal symbiosis and plant drought resistance. Mycorrhiza: Role and Applications. Allied Publishers Limited, New Delhi, 136–157. |
[5] | Ayuk-Takem. J. A. et Funda-Twine K. J., (1983). Rapport annuel d’activités, N°2577. 27-28. |
[6] | Baquy, M. A., Li, J., Xu, C., Mehmood, K., & Xu, R. (2016). Determination of critical pH and Al concentration of acidic Ultisols for wheat and canola crops, (August), 1–15. https://doi.org/10.5194/se-2016-126. |
[7] | Bechem, E. E. T., & Alexander, I. J. (2012). Mycorrhiza status of Gnetum spp. in Cameroon: evaluating diversity with a view to ameliorating domestication efforts. Mycorrhiza, 22(2), 99–108. |
[8] | Bernardo, L., Carletti, P., Badeck, F. W., Rizza, F., Morcia, C., Ghizzoni, R., … Lucini, L. (2019). Metabolomic responses triggered by arbuscular mycorrhiza enhance tolerance to water stress in wheat cultivars. Plant Physiology and Biochemistry, 137, 203–212. |
[9] | Bhuvaneswari, G., Sivaranjani, S. R. R., & Ramakrishnan, K. (2014). Journal of Chemical, Biological and Physical Sciences Techniques for Extraction and Quantification of Endomycorrhizea Fngi, 4(4), 3301–3308. |
[10] | Brann, D. E., Abaye, A. O., Peterson, P. R., Chalmers, D. R., Whitt, D. L., Chappell, G. F.,... & Alley, M. M. (2009). Agronomy handbook. |
[11] | Brundrett, M., Bougher, N., Dell, B., Grove, T., & Malajczuk, N. (1996). Working with mycorrhizas in agriculture and forestry. ACIAR Monograph, 32. |
[12] | Campos, P., Borie, F., Cornejo, P., López-Ráez, J. A., López-García, Á., & Seguel, A. (2018). Phosphorus acquisition efficiency related to root traits: Is mycorrhizal symbiosis a key factor to wheat and barley cropping? Frontiers in Plant Science, 9. |
[13] | Cardoso Filho, J. A., Sobrinho, R. R., & Pascholati, S. F. (2017). Arbuscular mycorrhizal symbiosis and its role in plant nutrition in sustainable agriculture. In Agriculturally Important Microbes for Sustainable Agriculture (pp. 129–164). Springer. |
[14] | Engle-Stone, R., & Brown, K. H. (2015). Comparison of a household consumption and expenditures survey with nationally representative food frequency questionnaire and 24-hour dietary recall data for assessing consumption of fortifiable foods by women and young children in Cameroon. Food and Nutrition Bulletin, 36(2), 211–230. |
[15] | Essiane-Ondo, O., Zerbib, J., Gianinazzi, S., & Wipf, D. (2019). Wheat landraces with low mycorrhizing ability at field respond differently to inoculation with artificial or indigenous arbuscular mycorrhizal fungal communities. Symbiosis, 1–12. |
[16] | Food and Agricultural Organisation of the United Nations. http://www.fao.org/worldfoodsituation/csdb/en/. access on 10/11/2019 at 14 h 04 mins |
[17] | Francis, R., & Read, D. J. (1995). Mutualism and antagonism in the mycorrhizal symbiosis, with special reference to impacts on plant community structure. Canadian Journal of Botany, 73(S1), 1301–1309. |
[18] | Gerdemann, J. W., & Nicolson, T. H. (1963). Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society, 46(2), 235–244. |
[19] | Hamel, C. (1996). Prospects and problems pertaining to the management of arbuscular mycorrhizae in agriculture. Agriculture, Ecosystems & Environment, 60(2–3), 197–210. |
[20] | Hsu, J. (1996). Multiple comparisons: theory and methods. Chapman and Hall/CRC. |
[21] | Kamko J. D., Tchiechoua Y. H., Ngonkeu E. L. M., Nzweundji J. G., Tchatat M., Eloumou D., Mam C. E., Chamedjeu R. R., Tekeu H., Lessa F. T., Foko B., Damdjo A., Ngo Ngom A., Boyomo B. (2020). Effect of Arbuscular Mycorrhizal Fungi Used as Biofertilizer for the Vegetative Propagation of Prunus africana (Hook.f.) Kalkman. International Journal of Plant Research, 10(3): 53-60. |
[22] | Koske RE, T. B. (1983). A convenient permanent slide mounting medium. Mycological Society American News, 34: 59. |
[23] | Legendre, L., & Legendre, P. (1984). Ecologie numérique, Tome 2, La structure des données écologiques. Québec, Canada Masson, Paris, France and Presses de l’Univ. Du. |
[24] | Llorens, E., Sharon, O., Camañes, G., García‐Agustín, P., & Sharon, A. (2019). Endophytes from wild cereals protect wheat plants from drought by alteration of physiological responses of the plants to water stress. Environmental Microbiology. |
[25] | Loit, K., Soonvald, L., Kukk, M., Astover, A., Runno-Paurson, E., Kaart, T., & Öpik, M. (2018). The indigenous arbuscular mycorrhizal fungal colonisation potential in potato roots is affected by agricultural treatments. Agronomy Research, 16(2), 510–522. |
[26] | Manuck, S. B., & McCaffery, J. M. (2014). Gene-environment interaction. Annual review of psychology, 65, 41-70. |
[27] | Mbogne, J. T., Temegne, C. N., Hougnandan, P., Youmbi, E., Tonfack, L. B., & Ntsomboh-N, G. (2015). Biodiversity of arbuscular mycorrhizal fungi of pumpkins (Cucurbita spp.) under the influence of fertilizers in ferralitic soils of Cameroon and Benin. J. Appl. Biol. Biotechnol, 3(5), 1–10. |
[28] | Mengistu, D. K., Kiros, A. Y., & Pè, M. E. (2015). Phenotypic diversity in Ethiopian durum wheat (Triticum turgidum var. durum) landraces. The Crop Journal, 3(3), 190–199. |
[29] | Mocauley H., Ramadjita T., (2015). Cereal crops: Rice, Maize, Millet, Sorghum, Wheat. Pp 1-36. |
[30] | Monier, B., Peta, V., Mensah, J., & Bücking, H. (2017). Inter-and intraspecific fungal diversity in the arbuscular mycorrhizal symbiosis. In Mycorrhiza-Function, Diversity, State of the Art (pp. 253–274). Springer. |
[31] | Morton, J. B. (1988). Taxonomy of VA mycorrhizal fungi: classification, nomenclature, and identification. Mycotaxon, 32, 267–324. |
[32] | Munkvold, L., Kjøller, R., Vestberg, M., Rosendahl, S., & Jakobsen, I. (2004). High functional diversity within species of arbuscular mycorrhizal fungi. New Phytologist, 164(2), 357–364. |
[33] | Negassa, A., Shiferaw, B., Koo, J., Sonder, K., Smale, M., Braun, H. J.,... & Payne, T. S. (2013). The potential for wheat production in Africa: analysis of biophysical suitability and economic profitability. |
[34] | Ngonkeu M.E.L. (2003) Biodiversité et potentiel des mycorhizes à arbuscules de certaines zones agro-écologiques du Cameroun. Thèse de Doctorat 3ème cycle. Université de Yaoundé I Cameroun. |
[35] | Nzweundji, G., Tchiechoua, Y. H., Tchotet, J. M. T., Djocgoué, P. F., Omokolo, D. N., Niemenak, N., … Ngonkeu, E. L. M. (2015). MOLECULAR DIVERSITY OF ARBUSCULAR MYCORRHIZAL FUNGI ASSOCIATED WITH PRUNUS AFRICANA (HOOK F.) KALKAM (ROSACEAE) IN AFRICANA (HOOK F.) KALKMAN (ROSACEAE) IN HUMID FOREST ZONES OF CAMEROON, (November). |
[36] | Oehl F., De Souza F.A., Sieverding E., (2008). Revision of scutellospora and description of five new genera and three families in the arbuscular mycorrhiza-forming Glomeromycetes. MYCOTAXON, 106: 311-360. |
[37] | Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department Of Agriculture; Washington. |
[38] | PAM, Situation de la securite alimentaire et des marches au Cameroun: Analyse globale de la securite alimentaire et de la vulnerabiliter (CFSVA), Avril-Mai, 2011. |
[39] | Pérez, Y. M., Charest, C., Dalpé, Y., Séguin, S., Wang, X., & Khanizadeh, S. (2016). Effect of inoculation with Arbuscular Mycorrhizal fungi on selected spring wheat lines. Sustainable Agriculture Research, 5(526-2017–2645). |
[40] | Phillips, J. M., & Hayman, D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55(1), 158-IN18. |
[41] | Pozo, M. J., & Azcón-Aguilar, C. (2007). Unraveling mycorrhiza-induced resistance. Current Opinion in Plant Biology, 10(4), 393–398. |
[42] | Roy-Bolduc, A., & Hijri, M. (2011). The use of mycorrhizae to enhance phosphorus uptake: a way out the phosphorus crisis. J Biofertil Biopestici, 2(104), 2. |
[43] | Rubio, R., Borie, F., Schalchli, C., Castillo, C., & Azcón, R. (2003). Occurrence and effect of arbuscular mycorrhizal propagules in wheat as affected by the source and amount of phosphorus fertilizer and fungal inoculation. Applied Soil Ecology, 23(3), 245–255. |
[44] | Saeed, S., Barozai, M. Y. K., Ahmad, A., & Shah, S. H. (2014). Impact of altitude on soil physical and chemical properties in Sra Ghurgai (Takatu mountain range) Quetta, Balochistan. International Journal of Scientific & Engineering Research, 5(3), 730–735. |
[45] | Sawers, R. J. H., Gutjahr, C., & Paszkowski, U. (2008). Cereal mycorrhiza: an ancient symbiosis in modern agriculture. Trends in Plant Science, 13(2), 93–97. |
[46] | Schüßler, A., Krüger, M., & Walker, C. (2009). Phylogeny, evolution and origin of the ‘plant-symbiotic’phylum Glomeromycota. The Mycota XIV–evolution of Fungi and Fungal-like Organisms. Springer, Berlin. |
[47] | SILVA, G. A. E., Siqueira, J. O., STÜRMER, S. L., & Moreira, F. (2018). Effectiveness of Arbuscular Mycorrhizal Fungal Isolates from the Land Uses of Amazon Region in Symbiosis with Cowpea. Anais Da Academia Brasileira de Ciências, 90(1), 357–371. |
[48] | Silva, G. A. E., Siqueira, J. O., Stürmer, S. L., & Moreira, F. M. S. (2018). Effectiveness of Arbuscular Mycorrhizal Fungal Isolates from the Land Uses of Amazon Region in Symbiosis with Cowpea, 90, 357–371. |
[49] | Singh, R., & Adholeya, A. (2013). Diversity of AM (Arbuscular mycorrhizal) Fungi in Wheat Agro-climatic Regions of India Virology & Mycology, 2(2). https://doi.org/10.4172/2161-0517.1000116. |
[50] | Singh, R., & Adholeya, A. (2013). Diversity of AM (Arbuscular mycorrhizal) fungi in wheat agro-climatic regions of India. Virol Mycol, 2(116), 517–2161. |
[51] | Smith, S. E., Smith, F. A., Jakobsen, I., & Smith, S. E. (2004). Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake, 511–524. https://doi.org/10.1111/j.1469-8137.2004.01039.x. |
[52] | Stover, H. J., Thorn, R. G., Bowles, J. M., Bernards, M. A., & Jacobs, C. R. (2012a). Arbuscular mycorrhizal fungi and vascular plant species abundance and community structure in tallgrass prairies with varying agricultural disturbance histories. Applied Soil Ecology, 60, 61–70. https://doi.org/10.1016/j.apsoil.2012.02.016. |
[53] | Stover, H. J., Thorn, R. G., Bowles, J. M., Bernards, M. A., & Jacobs, C. R. (2012b). Arbuscular mycorrhizal fungi and vascular plant species abundance and community structure in tallgrass prairies with varying agricultural disturbance histories. Applied Soil Ecology, 60, 61–70. |
[54] | Tekeu, H., Ngonkeu, E. L. M., Tandzi, L. N., Djocgoue, P. F., Bell, J. M., Mafouasson, H. A., … Fokom, R. (2015). Evaluation of maize (Zea mays L.) accessions using line x tester analysis for aluminum and manganese tolerance. International Journal of Biological and Chemical Sciences, 9(4), 2161–2173. |
[55] | Velázquez, M. S., Stürmer, S. L., Bruzone, C., Fontenla, S., Barrera, M., & Cabello, M. (2016). Occurrence of arbuscular mycorrhizal fungi in high altitude sites of the Patagonian Altoandina region in Nahuel Huapi National Park (Argentina). Acta Botanica Brasilica, 30(4), 521–531. |
[56] | Wang, B., & Qiu, Y.-L. (2006). Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza, 16(5), 299–363. |
[57] | Yamdjeu A., (2012). Données statistiques sur importation exportation des produits de bases. http://www.acd.c.net.5-08-2015 05-08-2015 13h40. |