International Journal of Plant Research
p-ISSN: 2163-2596 e-ISSN: 2163-260X
2012; 2(4): 131-137
doi:10.5923/j.plant.20120204.05
Ismail A. Mohammed1, Abdel gabbar N. Gumaa2, Nesreen M. Kamal3, Yasir S. Alnor3, Abdelbagi M. Ali3
1Department of Botany and Agricultural Biotechnology, Faculty of Agriculture, University of Khartoum, Sudan
2Department of Biology, Faculty of Education, University of Khartoum, Khartoum, Sudan
3Agricultural Research Corporation, Wad Medani, Sudan
Correspondence to: Ismail A. Mohammed, Department of Botany and Agricultural Biotechnology, Faculty of Agriculture, University of Khartoum, Sudan.
Email: | ![]() |
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved.
RAPD markers were used to determine the genetic relationships and evaluating similarity among some cucurbits species. Thirteen RAPD primers were used to amplify DNA extracted from the leaves of 10 cucurbit species using CTAB method. A total of 227 bands were amplified of which 225 showed polymorphism among the 10 species. PCR-RAPD analysis showed a number of differences in the size and number of bands among the species, which means that there are genetical differences among the studied cucurbit species. Based on these markers, genetic similarity coefficients were calculated and a dendrogram was constructed. The dendrogram analysis delineated three major clusters. The first cluster consisted of one group which comprised Cucurbita moschata and C. pepo at a level of 38.6 % genetic similarity. The second cluster consisted of four groups: Group I comprised Luffa aegyptiaca at a level of 20.6 % genetic similarity. Group II comprised the closely related species Cucumis melo var. reticullatus and C. melo var. flexuosus at a level of 62 % genetic similarity. Group III consisted of Cucumis sativus with about 37.8 % genetic similarity to group II. Group IV consisted of Ctenolepis cerasiformis at a level of 26.6 % genetic similarity. The third cluster consisted of two groups. Group I comprised Citrullus lanatus and Colocynythis vulgaris at a level of 36.2 % genetic similarity. Group II consisted of Coccinia grandis at the level of 19.4 % genetic similarity. The three clusters were similar to each other at a level of 15% genetic similarity. Genetic similarity ranged between 15% and 62 %. This study demonstrates that RAPD markers are useful in assessing genetic diversity among cucurbits.
Keywords: Cucurbits, Genetic Diversity, RAPD Marker
Cite this paper: Ismail A. Mohammed, Abdel gabbar N. Gumaa, Nesreen M. Kamal, Yasir S. Alnor, Abdelbagi M. Ali, Genetic Diversity among Some Cucurbits Species Determined by Random Amplified Polymorphic DNA RAPD Marker, International Journal of Plant Research, Vol. 2 No. 4, 2012, pp. 131-137. doi: 10.5923/j.plant.20120204.05.
|
|
![]() | Figure 1. Agarsoe gel showing polymerase chain reaction (PCR) products of 10 accessions of Cucurbits (a)using UBC157 primer (left) and UBC155 primer (right) and (b) using UBC 222 primer (left) and UBC OPB 05 primer (right) |
![]() | Figure 2. Agarsoe gel showing polymerase chain reaction (PCR) products of 10 accessions of Cucurbits (a) using A0 2 primer (left) and A01 primer (right) and (b) using A0 4 primer (left) and A0 3 primer (right) |
![]() | Figure 3. Dendrogram analysis of 10 species of the family Cucurbitaceae |
[1] | Whitaker , T. W . and G . N. Davis, Cucurbits : Botany , Cultivation and Utilization, 250p,.: Interscience , New York, 1962. |
[2] | Esquinas-Alcazar, J.T. and. P.J. Gulick, Genetic Resources of Cucurbitaceae, International Board for Plant Genetic Resources, Rome, 1983. |
[3] | Vallejos, E., Enzyme activity staining. In: S. Tanksley.S.D. and Orton.T.J. (Ed), Isozymes in plant genetics and breeding, Part A : pp. 469-516. Elsevier Science Publisher,1983. |
[4] | Evett, I.W. and B.S. Weir, Interpreting DNA Evidence. Sinauer Associates Inc.:Sunderland, Massachusetts, USA,1998. |
[5] | Zamir, D.; Navot, N. and J. Rudich, Enzyme polymorphism in Citrullus lanatus and C. colocynthis in Israel and Sinai, Plant Systematic and Evolution, 146,163-167,1984. |
[6] | Biles, C.L.; Martyn, R.D. and H.D. Wilson, Isozymes and general proteins from various watermelon cultivars and tissue types, Horticultural Science, 24, 10-812, 1989. |
[7] | Hashizume, T.; Sato, T. and, M. Hirai, Determination of genetic purity of hybrid seed in watermelon (Citrullus lanatus) and tomato (Lycopersicon esculentum) using Random Amplified Polymorphic DNA (RAPD),Japanese Journal of Breeding, 43:367-375, 1993. |
[8] | Zhang, X. P.; Rhodes, B.B. and H.S. Skorupska, RAPD Molecular markers in watermelon, Cucurbit Genetics CooperativeReport,17,116-119, 1994. |
[9] | Levi, A.; Thomas, C.E.; Keinath, A.P. and T.C. Wehner, Estimation of genetic diversity among Citrullus Accessions using RAPD markers, Acta Horticulturae, 510,385-390, 2000. |
[10] | Hashizume, T.; Skimamoto, I.; Harushima, Y.;Yui, M.; Sato, T.; Imai, T.and M. Hirai, Construction of a linkage Map for watermelon (Citrullus lanatus (Thunb.) Mastsum, & Nakai) using Random Amplified Polymorphic DNA (RAPD), Euphyica, 90, 265-273, 1996. |
[11] | Lee, S.J.; Shin, J.S.; Park, K.W. and Y.P. Hong, Detection of genetic diversity using RAPD- PCR and sugar analysis in watermelon (Citrullus lanatus (Thunb.) Mansf.) germplasm,Theoretical and Applied Genetic, 92,719-725, 1996. |
[12] | Toshiharu, H.; Ikuhiro, S.;Yoshiaki, H.; Mamiko, Y.; Takanori, S.; Tsuyoshi, I. and H. Masashi, Construction of a linkage map for watermelon (Citrullus lanatus (Thunb.) Mastsum & Nakai) using Random Amplified Polymorphic DNA (RAPD). Euphyica, 90, 265-273, 1996. |
[13] | Amnon, L.; Claude, E.; Anthony, P. and T. C. Wehner, Genetic diversity among watermelon (Citrullus lanatus) and Citrullus colocynthis accessions, Genetic Resoures and Crop Evolution, 48,559-566, 2001. |
[14] | Dellaporta, S.L.; Wood, J. and I. B. Hicks, A plant DNA Mini Preparation. Version 111, Plant Molecular Biology, 18,21-22,1983. |
[15] | Williams, J.G.K.; Kubelik, A.R.; Liuak, K.J.; Rafalski, J.A. and S.V. Tiney, DNAPolymorphisms amplified by arbitrary primers are useful as genetic markers, Nucleic AcidsResearch,18,6531-6535,1990. |
[16] | Sneath, P.H.A. and R.R. Sokal, NumericalTaxonomy Freeman, W.H., and Co., San Francisco, U. S. A, 1973. |
[17] | J. Rohlf, NTSYS-PC, Numerical Taxonomy and Multivariate Analysis System. Version 2, Applied Biostatistical Inc, New York,1993. |
[18] | Heikal, A. Hadia; Abdel-Razzak, H.S. and E.E. Hafez, Assessment of genetic relationships among and within Cucurbita species using RAPD and ISSR markers, Journal of Applied Sciences Research ,4(5), 515 – 525,2008. |
[19] | Ferriol, M.; Belen, M.P. and F. Nuez, Genetic diversity of some accessions of Cucurbita maxima from Spain using RAPD and SBAPmarkers,Genetic Resoures and Crop Evolution ,50(3), 227 – 238, 2003. |
[20] | Ferriol, M.; Pico, B. and F. Nuez, Genetic diversity of a germplasm collection of Cucurbita pepo using RAPD and AFLP markers, Theoretical and Applied Genetic, 107, 271 – 282, 2004. |
[21] | Athanasios, L.T.; Olga, K.; Anastasia, A., George, N. S., Ekaterini, T. and M. Kouksika-Sotiriou, Description and analysis of genetic diversity among squash accessions, Brazilian Archives of Biology and Technology, 52(2),271- 283, 2009. |
[22] | Levi, A,; Thomas C.E.; Keinath A.D. and T.C. Whener, Genetic diversity among watermelon (Citrullus lanatus) and Citrullus colocynthisaccessions, Genetic Resoures and Crop Evolution, 48, 556 – 559, 2001. |
[23] | Gwanama, C.; Labuschang. M.T. and A.M. Botha, Analysis of genetic variation in Cucurbita moschata by random amplified polymorphic DNA (RAPD) markers, Euphytica, 113,19 – 24, 2000. |
[24] | Marría, F.; Belen, P.; Pascual, F. and N. Fernando, Molecular diversity of a germplasm collection of squash ( Cucurbita moschata) determined by SRAP and AFLP markers, Crop Science, 44,653-664, 2004. |
[25] | Dje, Y., Tahi, G.C.; Zoro Bi IA.; Malice, M.; Baudoin JP. and P. Bertin, Optimization of ISSR marker for african edible-seeded cucurbitaceae species genetic diversity analysis, African Journal of Biotechnology, 5(2),83-87,2006. |
[26] | Leah, S.; Kovalski, I.; Huang, R.; Anagnostou, K.; Molly, M. and R. Perl-Treves, Molecular variation in melon ( Cucumis melo L.) as revealed by RFLP and RAPD markers, ScientiaHorticulturae,79,101-111,1999. |
[27] | Jeon, H.J.; Been, C.G.; Hong, K.H.; Om, Y.H. and B.D. Kim, Identification of cucurbitaceaecultivars by using RAPD markers, Journal of The Korean Society for Horticultural Science, 35,449-456, 1994. |