[1] | Rudall, P., 1994, Laticifers in Crotonoideae (Euphorbiaceae): Homology and evolution Annual report Missouri Botanical Garden, 81, 270–282 |
[2] | Webster, G. L., 1994, Classification of the Euphorbiaceae, Annual report Missouri Botanical Garden, 81, 86–93 |
[3] | R. G. O. Kekwick, “Latex and Laticifers”, Encyclopedia of Life Science, 2001 Available at http://www.els.net. Accessed 2006 February 28 |
[4] | Moussaoui, A. EL, Nijs, M., Paul, C., Wintjens, R., Vincentelli, J., Azakan, M., and Looze, Y., 2001, Revisiting the enzymes stored in the laticifers of Carica papaya in the context of their possible participation in the plant defense mechanism, Cellular and Molecular Life Sciences, 58, (10-11), 556-570 |
[5] | Ko, J.H., Chow, K., and Han, K.H., 2003, Transcriptome analysis offers new insights into the biology of laticifers in Hevea brasiliensis (para rubber tree), Plant Molecular Biology, 53, 479-492 |
[6] | Medda, R., Padiglia, A., Longu, S., Bellelli, A., Arcovito, A., Cavallo, S., Pedersen, J.Z., and Floris, G., 2003, Critical role of Ca2+ ions in the reaction mechanism of Euphorbia characias peroxidase, Biochemistry, 42, 8909-8918 |
[7] | Mura, A., Medda, R., Longu, S., Floris, G., Rinaldi, A. C., and Padiglia, A., 2005, A Ca2+/calmodulin-binding peroxidase from Euphorbia latex Novel aspects of calcium-hydrogen peroxide cross-talk in the regulation of plant defenses, Biochemistry, 4, 4120-14130 |
[8] | S. Hiraga, K. Sasaki, H. Ito, Y. Ohashi, and H. Matsui, A large family of class III plant peroxidases, Plant and Cell Physiology, 42, 462-468, 2001 |
[9] | Orozco-Cárdenasa, M. L., Narváez-Vásqueza, J., and Ryana, C. A., 2001, Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate, Plant Cell, 13, 179-191 |
[10] | Kawano, T., 2003, Roles of reactive oxygen species-generating peroxidase reactions in plant defense and growth induction, Plant Cell Reports, 21, 829-837 |
[11] | Mura, A., Pintus, F., Medda, R., Floris, G., Rinaldi, A. C., and Padiglia, A., 2007, Catalase and antiquitin from Euphorbia characias: Two proteins involved in plant defense?, Biochemistry (Mosc), 52, 501-508 |
[12] | Fridovich, I., 1995, Superoxide radical and superoxide dismutase, The Annual Review of Biochemistry, 64, 97-112 |
[13] | Mc Cord, J.M. and Fridovich, I., 1969, Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein), The Journal of Biological Chemistry, 244, 6049-6055 |
[14] | Bannister, J.V., Bannister, W.H., Rotilio, G., and Fridovich, I., 1987, Aspects of the structure, function, and applications of superoxide dismutase, CRC Critical Reviews in Biochemistry, 22, 111-180 |
[15] | Youn, H. D., Kim, E. J, Roe, J. H., Hah, Y. C., and Kang, S. O., 1996, A novel nickel-containing superoxide dismutase from Streptomyces spp, Biochemical Journal, 318, 889-896 |
[16] | Kim, E. J., Kim, H. P., Hah, Y. C., and Roe, J. H., 1996, Differential expression of superoxide dismutases containing Ni and Fe/Zn in Streptomyces coelicolor, European Journal of Biochemistry, 241, 178-185 |
[17] | Crapo, J.D., Oury, T., Rabouille, C., Slot, J.W., and Chang, L.Y., 1992, Copper, zinc superoxide dismutase is primarily a cytosolic protein in human cells, Proceedings of the National Academy of Sciences USA, 89, 10405-1040 |
[18] | Lin, C. T., Yeh, K. W., Kao, M. C., and Shaw, J. F., 1993, Cloning and characterization of a cDNA encoding the cytosolic copper/zinc-superoxide dismutase from sweet potato tuberous root, Plant Molecular Biology, 23, 911-913 |
[19] | Sturtz, L. A., Diekert, K., Jensen, L. T, Lill, R., and Culotta, V. C., 2001, A fraction of yeast Cu, Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage, The Journal of Biological Chemistry, 276, 38084-38089 |
[20] | Kanematsu, S., and Asada, K., 1991, Chloroplast and cytosol isozymes of CuZn-superoxide dismutase: their characteristic amino acid sequences, Free Radical Research Communications, 12-13 Pt 1, 383-390 |
[21] | Takao, M., Yasui, A., and Oikawa, A., 1991, Unique Characteristics of Superoxide Dismutase of a Strictly Anaerobic Archaebacterium Methanobacterium thermoautotrophicum, The Journal of Biological Chemistry, 266, 14151-14154 |
[22] | Liau, Y. J., Wen, L., Shaw, J. F., and Lin, C. T., 2007, A highly stable cambialistic-superoxide dismutase from Antrodia camphorata: expression in yeast and enzyme properties, Journal of Biotechnology, 131, 84-91 |
[23] | Perry, J.P., Shin, D.S., Getzoff, E.D., and Tainer, J.A., 2010, The structural biochemistry of the superoxide dismutases, Biochimica et Biophysica Acta, 1804, 245-262 |
[24] | Smith, M.W., and Doolittle, R., 1992, A comparison of evolutionary rates of the two major kinds of superoxide dismutase Journal of Molecular Evolution, 34, 175-184 |
[25] | Edwards, R. A., Baker, H. M., Whittaker, M. M., Whittaker, J. W., Jameson, G. B., and Baker, E. N., 1998, Crystal structure of Escherichia coli manganese superoxide dismutase at 21 Å resolution, The Journal of Biological Inorganic Chemistry, 3, 161-171 |
[26] | Borgstahl, G. E., Pokross, M., Chehab, R., Sekher, A., and Snell, E. H., 1999, Cryotrapping the six-coordinated, distorted-octahedral active site of manganese superoxide dismutase, Journal of Molecular Biology, 296, 951-959 |
[27] | Lah, M. S., Dixon, M. M., Pattridge, K. A., Stallings, W. C., Fee, J. A., and Ludwig, M. L., 1995, Structure-function in Escherichia coli iron superoxide dismutase: comparisons with the manganese enzyme from Thermus thermophiles, Biochemistry, 34, 1646-1660 |
[28] | Borgstahl, G. E., Parge, H. E., Hickey, M. J., Beyer, W. F.Jr., Hallewell, R. A., and Tainer, J. A. 1992, The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4-helix bundles, Cell, 71, 107-118 |
[29] | Wuerges, J., Lee, J. W., Yim, Y. I., Yim, H. S., Kang, S.O., and Djinović-Carugo, K., 2004, Crystal structure of nickel-containing superoxide dismutase reveals another type of active site, Proceedings of the National Academy of Sciences USA, 101, 8569-8574 |
[30] | Getzoff, E. D., Tainer, J. A., Stempien, M. M., Bell, G. I., and Hallewell, R. A., 1989, Evolution of Cu,Zn superoxide dismutase and the greek-key β-barrel structural motif” Proteins: Structure, Function, and Bioinformatics, 5, 322-336 |
[31] | Bordo, D., Djinovic-Carugo, K., and Bolognesi, M., 1994, Conserved patterns in superoxide dismutase structure, Journal of Molecular Biology, 238, 366-386 |
[32] | Kitagawa, Y., Tanaka, N., Hata, Y., Kusonoki, M., Lee, G., Katsube, Y., Asada, K., Aibara, S., and Morita, Y., 1991, Three-dimensional structure of Cu, Zn superoxide dismutase from spinach at 20 Å resolution, The Journal of Biochemistry, 109, 447-485 |
[33] | Djinovic, K., Gatti, G., Coda, A., Antolini, L., Pelosi, G., Desideri, A., Falconi, M., Marmocchi, F., Rotilio, G., and Bolognesi, M., 1992, Crystal structure of yeast Cu, Zn superoxide dismutase Crystallographic refinement at 25 Å resolution, Journal of Molecular Biology, 225, 791-809 |
[34] | Ogihara, N. L., Parge, H. E., Hart, P. J., Weiss, M. S., Goto, J. J., Crane, B. R., Tsang, J., Slater, K., Roe, J. A., Valentine, J. S., Eisenberg, D., and Tainer, J. A., 1996, Unusual trigonal-planar copper configuration revealed in the atomic structure of yeast copper-zinc superoxide dismutase, Biochemistry, 35, 2316-2321 |
[35] | Parge, H. E., Hallewell, R. A., and Tainer, J. A., 1992, Atomic structures of wild-type and thermostable mutant recombinant human Cu, Zn superoxide dismutase, Proceedings of the National Academy of Sciences USA, 89, 6109-6113 |
[36] | Djinovic-Carugo, K., Battistoni, A., Carri’, M. T., Polticelli, F., Desideri, A., Rotilio, G., Coda, A., Wilson, K. S., and Bolognesi, M., 1996, Three-dimensional structure of Xenopus laevis Cu, Zn superoxide dismutase b determined by X-ray crystallography at 15 Å resolution, Acta Crystallographica Section D, 52, 176-188 |
[37] | Bowler, C., Van Montagu, M., and Inzé, D., 1992, Superoxide dismutase and stress tollerance”, Annual Review of Plant Physiology and Plant Molecular Biology, 43, 83-116 |
[38] | Sanjust, E., Mocci, G., Zucca, P., and Rescigno, A., 2008, Mediterranean shrubs as potential antioxidants sources, Natural Product Research, 22, 689-708 |
[39] | Rose, T. M., Henikoff, J. G., and Henikoff, S., 2003, CODEHOP (COnsensus-DEgenerate Hybrid Oligonucleotide Primer) PCR primer design, Nucleic Acids Research, 31, 3763-3766 |
[40] | Frohman, M. A., 1993, Rapid amplification of complementary DNA ends for generation of full-length complementary DNAs: thermal RACE, Methods Enzymology, 218, 340-356 |
[41] | Bustin, S. A., 2000, Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays, Journal of Molecular Endocrinology, 25, 169-193 |
[42] | Misra, H. P., and Fridovich, I., 1977, Superoxide dismutase and peroxidase: a positive stain applicable to polyacrylamide gel electropherograms, Archives of Biochemistry and Biophysics, 183, 511–515 |
[43] | Beauchamp, C., and Fridovich, I., 1971, Superoxide dismutase: improved assays and an assay applicable to acrylamide gels, Analytical Biochemistry, 44, 276–287 |
[44] | Rinaldi, A., Floris, G., and Finazzi Agro´, A., 1982, Purification and properties of diamine oxidase from Euphorbia latex, European Journal of Biochemistry, 127, 417-422 |
[45] | Freitas, D. C., Soares Oliveira, J., Miranda, M. R., Macedo, N. M., Pereira Sales, M., Villas-Boas, L., and Viana Ramos, M., 2007, Enzymatic activities and protein profile of latex from Calotropis procera”, Plant Physiology and Biochemistry, 45, 781-789 |
[46] | Chary, P., Dillon, D., Schroeder, A. L., and Natvig, D. O., 1994, Superoxide dismutase (sod1) null mutants of Neurospora crassa: oxidative stress sensitivity, spontaneous mutation rate and response to mutagens”, Genetics, 137, 723-730 |
[47] | Chaturvedi, S., Hamilton, A. J., Hobby, P., Zhu, G., Lowry, C. V., and Chaturvedi, V., 2001, Molecular cloning, phylogenetic analysis and three-dimensional modeling of Cu, Zn superoxide dismutase (CnSOD1) from three varieties of Cryptococcus neoformans Gene, 268, 41-51 |
[48] | Getzoff, E. D., Tainer, J. A., Weiner, P. K., Kollman, P. A., Richardson, J. S., and Richardson, D. C., 1983, Electrostatic recognition between superoxide and copper, zinc superoxide dismutase, Nature, 306, 287-290 |
[49] | Durocher, D., and Jackson, S.P., 2002, The FHA domain, FEBS Letters, 513, 58-66. |
[50] | Cannon, R. E., and Scandalios, J. G., 1989, Two cDNAs encode two nearly identical Cu/Zn superoxide dismutase proteins in maize, Molecular and General Genetics, 219, 1-8 |
[51] | Herouart, D., Van Montagu, M., and Inze, D., 1993, Redox-activated expression of the cytosolic copper/zinc superoxide dismutase gene in Nicotiana, Proceedings of the National Academy of Sciences USA, 90, 3108-3112 |
[52] | Sakamoto, A., Okums, T., Ohsuga, H., and Tanaka, K., 1992, Genomic structure of the gene for copper/zinc-superoxide dismutase in rice, Federation of European Biochemical Societies, 301, 185-189 |
[53] | Akkapeddi, A. S., Noormets, A., Deo, B. K, Karnosky, D. F., and Podila, G. K., 1999, Gene structure and expression of the aspen cytosolic copper: zinc-superoxide dismutase (PtSodCc1), Plant Science, 143, 151–162 |
[54] | Shin, S. Y., Lee, H. S., Kwon, S. Y., Kwon, S. T., and Kwak, S. S., 2005, Molecular characterization of a cDNA encoding copper/zinc superoxide dismutase from cultured cells of Manihot esculenta, Plant Physiology and Biochemistry, 43, 55–60 |
[55] | Alscher, R. G., Erturk, N., and Heath, L. S., 2002, Role of superoxide dismutases (SODs) in controlling oxidative stress in plants, Journal of Experimental Botany, 53, 1331-1341 |
[56] | Giannopolities, C. N., and Rise, S. K., 1977, Superoxide dismutases I Occurrence in higher plants, Plant Physiology, 59, 304-309 |
[57] | Hagel, J. M., Yeung, E. C., and Facchini, P. J., 2008, Got milk? The secret life of laticifers, Trends in Plant Science, 13, 631-639 |
[58] | Agrawal, A. A., and Konno, K., 2009, Latex: a model for understanding mechanisms, ecology, and evolution of plant defense against herbivory, Annual Review of Ecology, Evolution, and Systematics, 40, 311-331 |
[59] | Mura, A., Pintus, F., Lai, P., Padiglia, A., Bellelli, A., Floris, G., and Medda R., 2006, Catalytic pathways of Euphorbia characias peroxidase reacting with hydrogen peroxide, Biological Chemistry, 387, 559-567 |
[60] | Pintus, F., Medda, R., Rinaldi, A. C., Spanò, D., and Floris, G., 2010, Euphorbia latex biochemistry: Complex interactions in a complex environment, Plant Biosystems, 144, 381-391 |
[61] | Padiglia, A., Medda, R., Lorrai, A., Murgia, B., Pedersen, J. Z., Finazzi Agrò, A., and Floris, G., 1998, Characterization of Euphorbia characias latex amine oxidase, Plant Physiology, 117, 1363-1371 |
[62] | Padiglia, A., Medda, R., Scanu, T., Longu, S., Rossi, A., and Floris, G., 2002, Structure and nucleotide sequence of Euphorbia characias copper/TPQ-containing amine oxidase gene, Journal of Protein Chemistry, 21, 435-441 |