Physical Chemistry
p-ISSN: 2167-7042 e-ISSN: 2167-7069
2012; 2(6): 86-93
doi: 10.5923/j.pc.20120206.01
M. Th. Makhlouf, B. M. Abu-Zied, T. H. Mansoure
Chemistry Department, Faculty of Science, Assiut University, 71516, Assiut, Egypt
Correspondence to: B. M. Abu-Zied, Chemistry Department, Faculty of Science, Assiut University, 71516, Assiut, Egypt.
Email: |
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved.
Combustion method has been used as a fast and facile method to prepare nanocrystalline Co3O4 spinel employing glycine as a combustion fuel. The products were characterized by thermal analyses (TGA & DTA), X-ray diffraction technique (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), and Transmission electron microscopy (TEM) techniques. Experimental results revealed that the molar ratio of fuel/oxidant play an important role in controlling the crystallite size of Co3O4 nanoparticles. Transmission electron microscopy indicated that the crystallite size of Co3O4 nanocrystals were in the range of 14–31 nm. Since the particle size of the powdered samples were found to be equivalent from both TEM and X-ray diffraction technique. X-ray diffraction confirmed the formation of CoO phase with spinel Co3O4. The effect of calcination temperature on crystallite size and morphology has been discussed.
Keywords: Nanao-materials, Nano-crystalline Co3O4, Combustion Synthesis, Cobalt Oxide
Cite this paper: M. Th. Makhlouf, B. M. Abu-Zied, T. H. Mansoure, "Direct Fabrication of Cobalt Oxide Nano-particles Employing Glycine as a Combustion Fuel", Physical Chemistry, Vol. 2 No. 6, 2012, pp. 86-93. doi: 10.5923/j.pc.20120206.01.
Figure 1. A schematic representation of the synthesis process |
(1) |
Figure 2. TGA and DTG curves obtained by heating the precursor having F/O ratio of 0.5 in air atmosphere |
Figure 3. DTA thermogram obtained by heating the precursor (F/O equal 0.5) in air atmosphere |
Figure 4. DTA thermogram obtained by heating the precursor (F/O equal 2) in air atmosphere |
Figure 5. XRD patterns of nano-crystalline Co3O4 samples calcined at 400 ℃, being prepared at different glycine/cobalt nitrate molar ratios; (a) 0.5, (b) 1, (c) 1.5, (d) 2, (e) 5, (f) 8, and (g) 16 |
Figure 6. Fig. 6: Effect of glycine to cobalt nitrate ratios (a) and calcination temperature (b) on the lattice parameter values of nano-crystalline Co3O4 |
Figure 8. FTIR spectra of as-prepared nano-crystalline Co3O4 at different molar ratios of glycine to cobalt nitrate; (a) 0.5, (b) 1, (c) 1.5 (d) 2, (e) 5, (f) 8, and (g) 16 |
Figure 9. SEM of as-prepared Co3O4 at different glycine to cobalt molar ratios, (a) 1, (b) 5, being calcined at 400 ℃ |
|
Figure 10. TEM of as-prepared Co3O4 at glycine to cobalt molar ratio of 0.5 calcined at, (a) 400 and (b) 1000℃ |
[1] | U. Zavyalova, P. Scholz, and B. Ondruschka, Appl. Catal. A Gen. 323, 226 (2007) |
[2] | B.M. Abu-Zied, S.A. Soliman, Catal. Lett. 132, 299 (2009) |
[3] | T. Garcia, S. Agouram, J.F. Sánchez-Royo, R. Murillo, A.M. Mastral, A. Aranda, I. Vázquez, A. Dejoz, B. Solsona, Appl. Catal. A: Gen. 386, 16 (2010) |
[4] | N. Koizum, S. Suzuki, Y. Ibi, Y. Hayasaka, Y. Hamabe, T. Shindo, M. Yamada, J. Synchr. Rad. 19, 74 (2012) |
[5] | C.B. Wang, C.C. Lee, J.L. Bi, J.Y. Siang, J.Y. Liu, C.T. Yeh, Catal. Tody. 146, 76 (2009) |
[6] | Y. Yu, T.Takei, H. Ohashi, H. He, X. Zhang, M. Haruta, J. Catal. 267, 121 (2009) |
[7] | N.M. Deraz, Mater. Lett. 57, 914 (2002) |
[8] | J. Feng, H.C. Zeng, Chem. Mater. 15, 2829 (2003) |
[9] | S.M.I. Morsy, S.A. Shaban, A.M. Ibrahim, M.M. Selim, J. Alloys. Comp. 486, 83 (2009) |
[10] | L. Ren, P. Wang, Y. Han, C. Hu, B. Wei, Chem. Phys. Lett. 476, 78 (2009) |
[11] | Y. Teng, S. Yamamoto, Y. Kusano, M. Azuma, Y. Shimakawa, Mater. Lett. 64, 239 (2010) |
[12] | A.H. Jayatissa, K. Guo, A.C. Jayasuriya, T.Gupta, Mater. Sci. Eng. B. 144, 69 (2007) |
[13] | Y. Zhang, Y. Liu, S. Fu, F. Guo, Y. Qian, Mater. Chem. Phys. 104, 166 (2007) |
[14] | Y. You-ping, H. Ke-long, L. Ren-sheng, W. Li-ping, Z. Wen-wen, Z. Ping-min, Trans Nonferrous Met. Soc. China 17, 1082 (2007) |
[15] | X. Ke, J. Cao, M. Zheng, Y. Chen, J. Liu, G. Ji, Mater. Lett. 61, 3901 (2007) |
[16] | J. Jiang, L. Li, Mater. Lett. 61, 4894 (2007) |
[17] | J.C. Toniolo, A.S. Takimi, C.P. Bergmann, Mater. Res. Bull. 45, 672 (2010) |
[18] | S.T. Aruna, A.S. Mukasyan, Curr. Opin. Solid state mater. Sci. 12, 44 (2008) |
[19] | V. Grover, S.V. Chavan, P.U. Sastry, A.K. Tyagi, J. Alloys. Comp. 457, 498 (2008) |
[20] | N.M. Deraz, J. Anal. Appl. Pyrol. 88, 103 (2010) |
[21] | B.M. Abu-Zied, Appl. Catal. A. 334, 234 (2008) |
[22] | C.H. Yan, Z.G. Xu, F.X. Xheng, Z.M.Wang, L.D. Sun, C.S. Liao, J.T. Jia, Solid State Commun. 111, 287 (1999). |
[23] | W.G. Fateley, F.R. Dollish, N.T. McDevitt, F.F. Bentley, Infrared and Raman Selection Rules for Molecular and Lattice Vibrations: the Correlation Method, John Weily and Sons, Inc., New York (1972) |