[1] | Y. Yin, H.E. Allen, C.P. Huang, D.L. Sparks and P.F. Sanders, “Kinetics of mercury(II) adsorption and desorption on soil”, ACS, Environ. Sci. Technol., vol. 31, pp. 496 -503, 1997. |
[2] | Y.S. HO and G. McKay, “Batch lead(II) removal from aqueous solution by peat: Equilibrium and Kinetics”, Institution of Chemical Engineers, Trans. IchemE Part B, vol. 77, pp. 165-173, 1999. |
[3] | Z. Reddad, C. Gerente, Y. Andres and P.L. Cloirec, “Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies”, ACS, Environ. Sci. Technol., vol. 36, pp. 2067-2073, 2002. |
[4] | D. Chatzopoulos, A. Varma and R.L Irvine, “Activated carbon adsorption and desorption of toluene in the aqueous phase”, Wiley, AIChE J., vol. 39, pp. 2027-2041, 1993. |
[5] | A. Karimi-Jashni and R.M. Narbaitz, “Impact of pH on the adsorption and desorption kinetics of 2-nitrophenol on activated carbons”, Elsevier, Water Res., vol. 31, pp. 3039-3044, 1997. |
[6] | A. Reyhanitabar and N. Karimian, “Kinetics of copper desorption of selected calcareous soils from Iran”, IDOSI, Am-Euras. J. Agric. & Environ. Sci., vol. 4, pp. 287-293, 2008. |
[7] | Y. S. Ho, J. C. Y. Ng and G. McKay, “Kinetics of pollutant sorption by biosorbents: review“, Taylor & Francis, Sep. Purif. Methods, vol. 29, pp. 189-232, 2000. |
[8] | Z. Li, “Sorption kinetics of hexadecyltrimethylammonium on natural clinoptilolite”, ACS, Langmuir, vol. 15, pp. 6438-6445, 1999. |
[9] | S.H. Chien and W.R. Clayton, “Application of elovich equation to the kinetics of phosphate release and sorption in soils”, SSSA, Soil Sci. Soc. Am. J., vol. 44, pp. 265-268, 1980. |
[10] | H. Bashiri, "Desorption kinetics at the solid/solution interface: A theoretical description by statistical rate theory for close-to-equilibrium systems", ACS, J. Phys. Chem. C, vol. 115, pp. 5732-5739, 2011. |
[11] | W. Rudzinski, T. Borowiecki, T. Panczyk, A. Dominko and W. Gac, "Thermodesorption studies of energetic properties of nickel and nickel-molybdenum catalysts based on the statistical rate theory of interfacial transport", Elsevier, Applied Catalysis A: General, vol. 224, pp. 299-310, 2002. |
[12] | T. Panczyk, W. Gac, M. Panczyk, T. Borowiecki and W. Rudzinski, "On the equilibrium nature of thermodesorption processes. TPD-NH3 studies of surface acidity of Ni/MgO-Al2O3 catalysts", ACS, Langmuir, vol. 22, pp. 6613-6621, 2006. |
[13] | S. Azizian and H. Bashiri, " Description of desorption kinetics at the solid/solution interface based on the statistical rate theory", ACS, Langmuir, vol. 24, pp. 13013-13018, 2008. |
[14] | C. A. Ward, “The rate of gas absorption at a liquid interface“, AIP, J. Chem. Phys., vol. 67, pp. 229-235, 1977. |
[15] | C. A. Ward, R. D. Findlay and M. Rizk, “Statistical rate theory of interfacial transport. I. theoretical development”, AIP, J. Chem. Phys., vol. 76, pp. 5599-5605, 1982. |
[16] | W. Rudzinski and T. Panczyk, " Kinetics of isothermal adsorption on energetically heterogeneous solid surfaces: a new theoretical description based on the statistical rate rheory of interfacial transport", ACS, J. Phys. Chem. B, vol. 104, pp. 9149-9162, 2000. |
[17] | T. Panczyk and W. Rudzinski, "A statistical rate theory approach to kinetics of dissociative gas adsorption on solids", ACS, J. Phys. Chem. B, vol. 108, pp. 2898-2909, 2004. |
[18] | W. Rudzinski and W. Plazinski, " Kinetics of solute adsorption at solid/solution interfaces: A theoretical development of the empirical pseudo-first and pseudo-second order kinetic rate equations, based on applying the statistical rate theory of interfacial transport", ACS, J. Phys. Chem. B, vol. 110, pp. 16514-16525, 2006. |
[19] | W. Rudzinski and W. Plazinski, "Application of the statistical rate theory of interfacial transport to investigate the kinetics of divalent metal ion adsorption onto the energetically heterogeneous surfaces of oxides and activated carbons", Elsevier, Appli. Surf. Sci., vol. 253, pp. 5814-5817, 2007. |
[20] | S. Azizian and H. Bashiri, "Adsorption kinetics at the solid/solution interface: statistical rate theory at initial times of adsorption and close to equilibrium", ACS, Langmuir, vol. 24, pp. 11669-11676, 2008. |
[21] | S. Azizian, H. Bashiri and H. Iloukhani, "Statistical rate theory approach to kinetics of competitive adsorption at the solid/solution interface", ACS, J. Phys. Chem. C, vol. 112, 10251-10255, 2008. |
[22] | W. Rudzinski and W. Plazinski, "Theoretical description of the kinetics of solute adsorption at heterogeneous solid/solution interfaces, On the possibility of distinguishing between the diffusional and the surface reaction kinetics models", Elsevier, Appli. Surf. Sci., vol. 253, pp. 5827-5840, 2007. |
[23] | F. A. Houle and W. D. Hinsberg, “Stochastic simulations of temperature programmed desorption kinetics“, Elsevier, Surf. Sci., vol. 338, pp. 329-346, 1995. |
[24] | F. A. Houle, W. D. Hinsberg and M. I. Sanches, “Kinetic model for positive tone resist dissolution and roughening”, ACS, Macromolecules, vol. 35, pp. 8591-8600, 2002. |
[25] | B.S. Chu, B.S. Baharin, Y.B. Cheman and S.Y Queck, “Separation of vitamin E from palm fatty acid distillate using silica. III. Batch desorption study”, Elsevier, J. Food Eng., vol. 64, pp. 1-7, 2004. |
[26] | M.X. Loukidou, T.D. Karapantsios, A.I. Zouboulis and K.A. Matis, “Diffusion kinetic study of cadmium(II) biosorption by Aeromonas caviae”, SCI, J. Chem. Technol. Biotechnol., vol. 79, pp. 711-719, 2004. |