[1] | S. Katz, J. L. Lebowitz and H. Spohn, “Phase transitions in stationary nonequilibrium states of model lattice systems,” Phys. Rev. B, 28(3), 1655–1658, 1983, http://dx.doi.org/DOI:10.1103/PhysRevB.28.1655 |
[2] | S. Katz, J. L. Lebowitz and H. Spohn, “Nonequilibrium steady states of stochastic lattice gas models of fast ionic conductors,” J. Stat. Phys., 34(3/4), 497–537, 1984, http://dx.doi.org/DOI:10.1007/BF01018556 |
[3] | R. K. P. Zia, “Twenty five years after KLS: A celebration of non-equilibrium statistical mechanics,” J. Stat. Phys., 138, 20–28, 2010, http://dx.doi.org/DOI:10.1007/s10955-009-9884-0 |
[4] | A. Kleidon and R. D. Lorenz, Non-equilibrium Thermodynamics and the Production of Entropy, chap. 1, New York: Springer, 2004 |
[5] | A. Kleidon, “Nonequilibrium thermodynamics and maximum entropy production in the earth system: Applications and implications,” Naturwissenschaften, 96, 653–677, 2009, http://dx.doi.org/DOI:10.1007/s00114-009-0509-x |
[6] | R. C. Dewar, “Maximum entropy production and plant optimization theories,” Trans. Roy. Soc. B, 365, 1429–1435, 2010, http://dx.doi.org/DOI:10.1098/rstb.2009.0293 |
[7] | J. Dyke and A. Kleidon, “The maximum entropy production principle: Its theoretical foundations and applications to the earth system,” Entropy, 12(3), 613–630, 2010, http://dx.doi.org/DOI:10.3390/e12030613 |
[8] | R. K. Niven, “Steady state of a dissipative flow-controlled system and the maximum entropy production principle,” Phys. Rev. E, 80(2), 021113, 2009, http://dx.doi.org/DOI:10.1103/PhysRevE.80.021113 |
[9] | L. M. Martyushev, “The maximum entropy production principle: two basic questions,” Phil. Trans. R. Soc. B, 365, 1333-1334, 2010, http://dx.doi.org/DOI:10.1098/rstb.2009.0295 |
[10] | L. M. Martyushev and M. S. Konovalov, “Thermodynamic model of nonequilibrium phase transitions,” Phys. Rev. E., 84, 011113. 2011, http://dx.doi.org/DOI:10.1103/PhysRevE.84.011113 |
[11] | J. Ross, Thermodynamics and Fluctuations Far From Equilibrium, vol. 90 of Springer series in chemical physics, Berlin: Springer, 2008 |
[12] | M. Vellela and H. Qian, “Stochastic dynamics and non-equilibrium thermodynamics of a bistable chemical system: The Schlögl model revisited,” J. Royal Soc. Interface, 6(39), 925–940, 2009, http://dx.doi.org/DOI:10.1098/rsif.2008.0476 |
[13] | P. Attard, “The second entropy: a general theory for non-equilibrium thermodynamics and statistical mechanics,” Annual Reports Progress Chemistry C, 105, 63–173, 2009, http://dx.doi.org/DOI:10.1039/B802697C |
[14] | R. M. Velasco, L. S. García-Colín and F. J. Uribe, “Entropy production: Its role in non-equilibrium thermodynamics,” Entropy, 13, 82-116, 2011, http://dx.doi.org/DOI:10.3390/e13010082 |
[15] | T. Rao, T. Xiao and Z. Hou, “Entropy production in a mesoscopic chemical reaction system with oscillatory and excitable dynamics,” J. Chem. Phys., 134, 214112, 2011. http://dx.doi.org/DOI:10.1063/1.3598111 |
[16] | A. Prados and J. J. Brey, “The Kovacs effect: a master equation analysis,” J. Stat. Mech., page P02009, 2010, http://dx.doi.org/DOI:10.1088/1742-5468/2010/02/P02009 |
[17] | D. J. Searles and D. J. Evans, “Fluctuations relations for nonequilibrium systems,” Aust. J. Chem., 57, 1119–1123, 2004, http://dx.doi.org/DOI:10.1071/CH04115 |
[18] | E. M. Sevick, R. Prabhakar, S. R. Williams and D. J. Searles, “Fluctuation theorems,” Annu. Rev. Phys. Chem., 59, 603–633, 2008, http://dx.doi.org/DOI:10.1146/annurev.physchem.58.032806.104555 |
[19] | J. L. Lebowitz and H. Spohn, “A Gallavotti-Cohen-type symmetry in the large deviation functional for stochastic dynamics,” J. Stat. Phys., 95(1/2), 333–365, 1999, http://dx.doi.org/DOI:10.1023/A:1004589714161 |
[20] | P. D. Siders, “Effects of field orientation on the driven lattice gas,” J. Stat. Phys., 119(3-4), 861–880, 2005, http://dx.doi.org/DOI:10.1007/s10955-005-4427-9 |
[21] | G. F. Newell and E. W. Montroll, “On the theory of the Ising model of ferromagnetism,” Rev. Mod. Phys., 25(2), 353–389, 1953, http://dx.doi.org/DOI:10.1103/RevModPhys.25.353 |
[22] | M. Q. Zhang, “Exact results on the steady state of a hopping model,” Phys. Rev. A, 35(5), 2266–2275, 1987, http://dx.doi.org/DOI:10.1103/PhysRevA.35.2266 |
[23] | Q. Zhang, Nonequilibrium steady states of a stochastic model system, Ph.D. thesis, Rutgers, the State University of New Jersey, Rutgers, New Jersey, 1987 |
[24] | K. S. C. Kumaran, Nonequilibrium steady states of the lattice gas, Master’s thesis, University of Minnesota Duluth, Duluth, Minnesota, 2004 |
[25] | R. K. P. Zia, L. B. Shaw, B. Schmittmann and R. J. Astolos, “Contrasts between equilibrium and non-equilibrium steady states: computer aided discoveries in simple lattice gases,” Comput. Phys. Commun., 127, 24–31, 2000, http://dx.doi.org/DOI:10.1016/S0010-4655(00)00022-9 |
[26] | R. K. P. Zia, E. L. Praestgaard and O. G. Mouritsen, “Getting more from pushing less: negative specific heat and conductivity in nonequilibrium steady states,” Am. J. Phys., 70(4), 384–392, 2002, http://dx.doi.org/DOI:10.1119/1.1427088 |
[27] | R. K. P. Zia and B. Schmittmann, “Probability currents as principal characteristics in the statistical mechanics of non-equilibrium steady states,” J. Stat. Mech., page P07012, 2007, http://dx.doi.org/DOI:10.1088/1742-5468/2007/07/P07012 |
[28] | J. Schnakenberg, “Network theory of microscopic and macroscopic behavior of master equation systems,” Rev. Mod. Phys., 48(4), 571–585, 1976, http://dx.doi.org/DOI:10.1103/RevModPhys.48.571 |
[29] | T. Tomé and M. J. de Oliveira, “Entropy production in irreversible systems described by a Fokker-Planck equation,” Phys. Rev. E, 82, 021120, 2010, http://dx.doi.org/DOI:10.1103/PhysRevE.82.021120 |
[30] | J. Marro and R. Dickman, Nonequilibrium phase transitions in lattice models, Cambridge: Cambridge University Press, 1999 |
[31] | N. G. van Kampen, Stochastic Processes in Physics and Chemistry, Amsterdam: Elsevier, 3 ed., 2007 |
[32] | F. Q. Potiguar and R. Dickman, “Driven lattice gas with nearest-neighbor exclusion: shear-like drive,” Eur. Phys. J. B, 52, 83–90, 2006, http://dx.doi.org/DOI:10.1140/epjb/e2006-00266-x |
[33] | G. P. Saracco and E. V. Albano, “Dynamic and spatial behavior of a corrugated interface in the driven lattice gas model,” Physica A, 389, 3387, 2010, http://dx.doi.org/DOI:10.1016/j.physa.2010.05.012 |
[34] | R. B. Lehoucq, D. C. Sorensen and C. Yang, ARPACK User’s Guide: Solution of Large Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, Philadelphia, 1998, http://www.caam.rice.edu/software/ARPACK/ |
[35] | F. M. Gomes and D. C. Sorensen, ARPACK++: An object-oriented version of ARPACK eigenvalue package, 1998, http://www.caam.rice.edu/software/ARPACK/ |
[36] | J. Burkardt, RKF45, 2004, http://people.sc.fsu.edu/~jburkardt/. |
[37] | L. F. Shampine, H. A. Watts and S. M. Davenport, “Solving nonstiff ordinary differential equations — the state of the art,” SIAM Rev., 18(3), 376–411, 1976, http://dx.doi.org/DOI:10.1016/0378-4754(78)90070-8 |
[38] | P. Attard, Thermodynamics and Statistical Mechanics: Equilibrium by Entropy Maximisation, San Diego: Academic Press, 2002, e.g., equation 1.12 |
[39] | N. C. Pesheva, Y. Shnidman and R. K P. Zia, “A maximum entropy mean field method for driven diffusive systems,” J. Stat. Phys., 70(3/4), 737–771, 1993, http://dx.doi.org/DOI:10.1007/BF01053593 |
[40] | J. J. Brey and A. Prados, “Calculation of the entropy from master equations with time-dependent transition probabilities,” Phys. Rev. A, 42, 765–768, 1990http://dx.doi.org/DOI:10.1103/PhysRevA.42.765 |
[41] | U. Seifert, “Stochastic thermodynamics: principles and perspectives,” Eur. Phys. J B, 64, 423–431, 2008, http://dx.doi.org/DOI:10.1140/epjb/e2008-00001-9 |
[42] | U. Seifert and T. Speck, “Fluctuation-dissipation theorem in nonequilibrium steady states„” Europhys. Lett., 89, 10007, 2010. http://dx.doi.org/DOI:10.1209/0295-5075/89/10007 |
[43] | G. Aquino, A. Allahverdyan and T. M. Nieuwenhuizen, “Memory effects in the two-level model for glasses,” Phys. Rev. Lett., 101(1), 015901, 2008, http://dx.doi.org/DOI:10.1103/PhysRevLett.101.015901 |
[44] | P. Attard, “The second entropy: A variational principle for time-dependent systems,” Entropy, 10(3), 380–390, 2008, http://dx.doi.org/DOI:10.3390/e10030380 |