[1] | R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics, vol. 4, no. 8, pp. 495–497, 2010. |
[2] | G. P. Williams, “Filling the THz gap—high power sources and applications,” Reports Prog. Phys., vol. 69, no. 2, p. 301, 2005. |
[3] | M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics, vol. 1, no. 2, pp. 97–105, 2007. |
[4] | H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature, vol. 444, no. 7119, pp. 597–600, 2006. |
[5] | H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent progress in electromagnetic metamaterial devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron., vol. 17, no. 1, pp. 92–101, 2011. |
[6] | W. Withayachumnankul and D. Abbott, “Metamaterials in the terahertz regime,” IEEE Photonics J., vol. 1, no. 2, pp. 99–118, 2009. |
[7] | J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, and others, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun., vol. 3, p. 1151, 2012. |
[8] | N. Born, I. Al-Naib, C. Jansen, R. Singh, J. V Moloney, M. Scheller, and M. Koch, “Terahertz metamaterials with ultrahigh angular sensitivity,” Adv. Opt. Mater., vol. 3, no. 5, pp. 642–645, 2015. |
[9] | R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett., vol. 105, no. 8, p. 81108, 2014. |
[10] | A. A. Zharov, I. V Shadrivov, and Y. S. Kivshar, “Nonlinear properties of left-handed metamaterials,” Phys. Rev. Lett., vol. 91, no. 3, p. 37401, 2003. |
[11] | S. Khatua, W.-S. Chang, P. Swanglap, J. Olson, and S. Link, “Active modulation of nanorod plasmons,” Nano Lett., vol. 11, no. 9, pp. 3797–3802, 2011. |
[12] | A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics, vol. 6, no. 11, pp. 749–758, 2012. |
[13] | K. S. Novoselov, V. I. Fal, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, and others, “A roadmap for graphene,” Nature, vol. 490, no. 7419, pp. 192–200, 2012. |
[14] | J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano, vol. 6, no. 1, pp. 431–440, 2011. |
[15] | A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater., vol. 6, no. 3, pp. 183–191, 2007. |
[16] | H. S. Chu and C. How Gan, “Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays,” Appl. Phys. Lett., vol. 102, no. 23, pp. 1–8, 2013. |
[17] | C. H. Gan, “Analysis of surface plasmon excitation at terahertz frequencies with highly doped graphene sheets via attenuated total reflection,” Appl. Phys. Lett., vol. 101, no. 11, p. 111609, 2012. |
[18] | H.-S. Chu and C. H. Gan, “Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays,” Appl. Phys. Lett., vol. 102, no. 23, p. 231107, 2013. |
[19] | M. Amin, M. Farhat, and H. Baǧcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep., vol. 3, pp. 1–8, 2013. |
[20] | H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, and F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol., vol. 7, no. 5, pp. 330–334, 2012. |
[21] | S. H. Lee, M. Choi, T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. Choi, S. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater., vol. 11, no. 10, pp. 1–6, 2012. |
[22] | H. Choi, F. Borondics, D. A. Siegel, S. Y. Zhou, M. C. Martin, and A. Lanzara, “Broadband electromagnetic response and ultrafast dynamics of few-layer epitaxial graphene,” vol. 172102, no. 2009, pp. 1–4, 2012. |
[23] | V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. Condens. Matter, vol. 19, no. 2, p. 26222, 2007. |
[24] | C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett., vol. 7, no. 9, pp. 2711–2717, 2007. |
[25] | K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun., vol. 146, no. 9, pp. 351–355, 2008. |
[26] | J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nat. Nanotechnol., vol. 3, no. 4, pp. 206–209, 2008. |
[27] | M. Polini and F. H. L. Koppens, “Graphene: Plasmons in moire superlattices,” Nat. Mater., vol. 14, no. 12, pp. 1187–1188, 2015. |
[28] | A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 85, no. 8, pp. 1–4, 2012. |
[29] | J. S. Gómez-D’\iaz and J. Perruisseau-Carrier, “Graphene-based plasmonic switches at near infrared frequencies,” Opt. Express, vol. 21, no. 13, p. 15490, Jun. 2013. |