[1] | DWDM ITU Grid: C-Band 100 GHz Spacing, Fiberdyne LABS Inc., http://www.fiberdyne.com/. |
[2] | A. H. Gnauck, P. J. Winzer, C. R. Doerr, and M. Magarini, “Spectrally efficient long-haul optical network using 224-Gb/s polarization-multiplexed 16-QAM”, J. Lightwave Technol., Vol. 29, Iss. 4, pp. 373-377, 2010. |
[3] | Muguang Wang, Tangjun Li, Cao Diao, and Shuisheng Jian, “Chromatic dispersion and PMD compensation in 4x10-Gb/s 400-km G.652 fiber WDM transmission system”, The 7th Int’l Conf. Adv. Com. Technol., ICACT 2005, Vol. 1, pp. 147-151, 2005. |
[4] | M. A. Garcia Yanez and R. Gutierrez, “Technical feasibility of a 400 Gb/s unamplified WDM coherent transmission system for Ethernet over 40 km of single-mode fiber”, Elec. Eng. Compu. Sci. Autmat. Contr. (CCE), 12th Int’l Conf., IEEE, ISBN978-1-4673-7839-0, pp. 1-6, Mexico City, 2015. |
[5] | ITU standard 100 GHz DWDM wavelength grid, www.telecomengineering.com, 2014. |
[6] | John Zyskind and Atul Srivastava, Optically Amplified WDM Networks, Elsevier Inc., London, 2011. |
[7] | V. Bobrovos, J. Porins, G. Ivanovs, “Influence of nonelinear optical effects on the NRZ and RZ modulation signals in WDM systems”, J. of Electronics and Electrical Engineering, No. 4-76, pp: 55-58, 2007. |
[8] | V. Khanaa, Krishna Mohanta, T. Saravanan, “Performance analysis of FTTH using GEPON in direct and external modulation”, Indian J. of Science and Technol., Vol. 6, pp: 4848-4852, 2013. |
[9] | G. R. Jones, M. A. Laughton, M. G. Say, Electrical Engineer’s Reference Book, Butterworth Heinemann Ltd., ISBN 7505, pp. 274, 1993. |
[10] | Corning datasheet for InGas PIN photo diode module, www.laserdiode.com. |
[11] | F. Graham Smith, Terry A. King, and Dan Wilkins, Optics and Photonics: An Introduction, Second Ed., John Wiley & Sons Ltd., London, 2007. |
[12] | Opto-Link Corporation Ltd., Erbium-Doped Fiber Amplifier (EDFA) for DWDM, www.optolinkcorp.com. |
[13] | S. C. Cupta, Textbook on optical fiber communication and its applications, PHI Learning Private Limited, ISBN 978-81-203-45800-5, pp: 236, 2012. |
[14] | I. Djordjevic, W. Ryan, B. Vasic, Coding for Optical Channels, Springer Science & Business Media, New York, USA, 2010. |
[15] | R. J. Nuyts, Y. K. Park, and P. Gallion, “Performance improvement of 10 Gb/s standard fiber transmission system by using the SPM effect in the dispersion compensating fiber”, IEEE Photon. Technol. Lett., Vol. 8, Issue: 10, 2002. |
[16] | C. Peucheret, N. Hanik, R. Freund, L. Moller, et al, “Optimization of Pre-Post dispersion compensating schemes for 10 Gb/s NRZ links using standard and dispersion compensating fiber”, IEEE Photon. Technol. Lett., Vol. 12, Iss. 8, 2002. |
[17] | Faramarz E. Seraji and Razieh Kiaee, “A Revisit of Refractive Index Profiles Design for Reduction of Positive Dispersion, Splice Loss, and Enhancement of Negative Dispersion in Optical Transmission Lines”, Int’l J. Opt. Appli., Vol. 4, No. 2, pp. 62-67, 2014. |
[18] | L. P. Shen, W. P. Huang, G. X. Chen, and S. S. Jian, “Design and optimization of photonic crystal fibers for broad-band dispersion compensation”, IEEE Photon. Technol. Lett., Vol. 15, Iss. 4, 2003. |
[19] | Amit Halder, Shaik Asif Hossain, “Design of Ultra-high birefringent broadband dispersion compensating photonic crystal fiber for high speed transmission system”, IJIR, Vol. 1, No. 3, 2016. |
[20] | Z. Guo, J. Yuan, et al, “Highly coherent supercontinuum generation in the normal dispersion liquid-core photonic crystal fiber”, PIER M, Vol. 48, pp. 67-76, 2016. |
[21] | Le Nguyen Binh, Optical fiber communications systems: Theory and Practice with MATLAB® and Simulink® Models, Taylor & Francis Group, p. 142, 2010, ISBN: 1439806209, 9781439806203. |
[22] | Amin Abbasi, Christos Spatharakis, GiannisKanakis, et al, “High speed direct modulation of a heterogeneously integrated InP/SOI DFB laser”, J. of Lightwave Technol., Vol. 34, No. 8, pp: 1683-1688, 2016. |
[23] | M. J. Pettitt, “Use of optical amplifiers in long haul transmission systems”, IEEE Colloquium on Optical Amplifiers for Communications, INSPEC Acc. No. 3546552, London, 1992. |
[24] | A. Pizzinat, M.M. Santagiustina, and C. Schivo, “Impact of hybrid EDFA-distributed Raman amplification on a 4x40 Gb/s WDM optical Communication system”, IEEE Photon. Technol. Lett., INSPEC Acc. No. 7683605, pp: 341-343, 2003. |
[25] | Ronghua Chi, Lue Li, Xianqian Li, and Xiaohan Sun, “Stimulated Brillouin scattering suppressed EDFA in a long-haul optical fiber link system”, ICOCN, INSPEC Acc. No. 15399279, pp. 1-3, Nanjing, 2015. |
[26] | Wei Nai, Decun Dong, Xiaoming Hu, and Xin Wang, “Improving nonlinear effects by cascading EDFA and RFA in long-haul CATV transmission link”, SOPO, INSPEC Acc. No. 12948122, pp. 1-4, Shanghai, 2012. |
[27] | Ojuswini Arora, Amit Kumar Garg, and SavitaPunia, “Symmetrical dispersion compensation for high speed optical links”, IJCSI, Vol. 8, Iss. 6, pp. 371-376, 2011. |
[28] | Simranjit Singh and R. S. Kaler, “Comparison of pre- post- and symmetrical compensation for 96 channel DWDM system using PDCF and PSMF”, Int’l. J. Light Electron Opt., Vol. 124, Issue 14, pp. 1808-1813, 2013. |
[29] | R. S. Kaler, Ajay K. Sharma, and T.S. Kamal, “Comparison of pre-, post- and symmetrical-dispersion compensation schemes fo 10 Gb/s NRZ link using standard and dispersion compensated fibers”, Opt. Commun., Vol. 209, Iss. 1-3, pp. 107-123, 2002. |
[30] | Simranjit Singh and R. S. Kaler, “Placement of hybrid optical amplifier in fiber optical communication systems”, Int’l. J. Light Electron Opt., Vol. 123, Iss. 18, pp. 1636-1639, 2012. |
[31] | Ranjani, Raju Pal, and Vishal Sharma, “Comparison of pre- post- and symmetrical dispersion compensation schemes for 10/15 Gb/s using different modulation formats at various optical power levels using standard and dispersion compensated fibers”, Int’l. J. Comp. Apps., Vol. 50, No. 21, pp. 6-13, 2012. |
[32] | Manpreet Kaur and Himali Sarangal, “Simulative investigation of 32×10, 32×20 and 32×10 Gb/s DWDM systems with dispersion compensating fiber”, IJSP, Vol. 8, Iss. 8, pp. 127-134, 2015. |