[1] | M. Carofiglio, S. Barui, V. Cauda, and M. Laurenti, “Doped Zinc Oxide Nanoparticles: Synthesis, Characterization and Potential Use in Nanomedicine,” Appl. Sci., vol. 10, no. 15, p. 5194, Jul. 2020, doi: 10.3390/app10155194. |
[2] | Z. L. Wang, “Zinc oxide nanostructures: growth, properties and applications,” J. Phys. Condens. Matter, vol. 16, no. 25, pp. R829–R858, Jun. 2004, doi: 10.1088/0953-8984/16/25/R01. |
[3] | F. F. H. Aragón et al., “Evidence of progressive Fe2+ to Fe3+oxidation in Fe2+-doped ZnO nanoparticles,” Mater. Adv., vol. 4, no. 5, pp. 1389–1402, 2023, doi: 10.1039/d3ma00053b. |
[4] | M. Foyshal, M. F. Kabir, A. Islam, J. Ferdousy, M. R. Islam, and M. M. Rahman, “Enhanced Biocompatibility and Multifunctional Properties of Iron-Doped Zinc Oxide Nanoparticles for Applications,” Oct. 18, 2023. doi: 10.21203/rs.3.rs-3426239/v1. |
[5] | R. S. Kate, S. A. Khalate, and R. J. Deokate, “Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: A review,” J. Alloys Compd., vol. 734, pp. 89–111, Feb. 2018, doi: 10.1016/j.jallcom.2017.10.262. |
[6] | M. Z. Hossain, S. M. A. Nayem, Md. S. Alam, Md. I. Islam, G. Seong, and A.-N. Chowdhury, “Hydrothermal ZnO Nanomaterials: Tailored Properties and Infinite Possibilities,” Nanomaterials, vol. 15, no. 8, p. 609, Apr. 2025, doi: 10.3390/nano15080609. |
[7] | S. Fabbiyola, L. J. Kennedy, U. Aruldoss, M. Bououdina, A. A. Dakhel, and J. Judith Vijaya, “Synthesis of Co-doped ZnO nanoparticles via co-precipitation: Structural, optical and magnetic properties,” Powder Technol., vol. 286, pp. 757–765, Dec. 2015, doi: 10.1016/j.powtec.2015.08.054. |
[8] | S. Chakrabarti et al., “Sonochemical Synthesis and Characterization of Iron (Fe) Doped Zinc Oxide (ZnO) Nanoparticles,” 2016, pp. 55–61. |
[9] | S. Kumari et al., “A comprehensive review on various techniques used for synthesizing nanoparticles,” J. Mater. Res. Technol., vol. 27, pp. 1739–1763, Nov. 2023, doi: 10.1016/j.jmrt.2023.09.291. |
[10] | S. H. Zyoud et al., “Superior photocatalytic degradation of pharmaceuticals and antimicrobial Features of iron-doped zinc oxide sub-microparticles synthesized via laser-assisted chemical bath technique,” Results Eng., vol. 24, p. 102875, Dec. 2024, doi: 10.1016/j.rineng.2024.102875. |
[11] | A. Vishwakarma, “Synthesis of Zinc Oxide Nanoparticle by Sol-Gel Method and Study its Characterization,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 8, no. 4, pp. 1625–1627, Apr. 2020, doi: 10.22214/ijraset.2020.4265. |
[12] | N. Mufti et al., “The Effect of Growth Temperature on The Characteristics Of ZnO Nanorods And Its Optical Properties,” J. Phys. Conf. Ser., vol. 1057, p. 012005, Jul. 2018, doi: 10.1088/1742-6596/1057/1/012005. |
[13] | O. H. Abd-Elkader, M. Nasrallah, L. Aleya, and M. Nasrallah, “Biosynthesis, Optical and Magnetic Properties of Fe-Doped ZnO/C Nanoparticles,” Surfaces, vol. 6, no. 4, pp. 410–429, Oct. 2023, doi: 10.3390/surfaces6040028. |
[14] | Department of Physical and Biological Sciences, Murang’a University of Technology, PO BOX 75, Murang’a 10200, Kenya and J. Jepngetich, “Effects of Ag Doping Concentrations on Structural and Optical Properties of Citrus Reticulata Capped ZnO Nanoparticles,” J. Nanosci. Res. Rep., pp. 1–7, Apr. 2025, doi: 10.47363/JNSRR/2025(7)176. |
[15] | D. Dasuki, K. Habanjar, and R. Awad, “Effect of Growth and Calcination Temperatures on the Optical Properties of Ruthenium-Doped ZnO Nanoparticles,” Condens. Matter, vol. 8, no. 4, p. 102, Nov. 2023, doi: 10.3390/condmat8040102. |
[16] | A. G. Kaningini et al., “Effect of Optimized Precursor Concentration, Temperature, and Doping on Optical Properties of ZnO Nanoparticles Synthesized via a Green Route Using Bush Tea (Athrixia phylicoides DC.) Leaf Extracts,” ACS Omega, vol. 7, no. 36, pp. 31658–31666, Sep. 2022, doi: 10.1021/acsomega.2c00530. |
[17] | T. Srinivasulu, K. Saritha, and K. T. R. Reddy, “Synthesis and characterization of Fe-doped ZnO thin films deposited by chemical spray pyrolysis,” Mod. Electron. Mater., vol. 3, no. 2, pp. 76–85, Jun. 2017, doi: 10.1016/j.moem.2017.07.001. |
[18] | P. L. Hadimani, S. S. Ghosh, and A. Sil, “Preparation of Fe doped ZnO thin films and their structural, magnetic, electrical characterization,” Superlattices Microstruct., vol. 120, pp. 199–208, Aug. 2018, doi: 10.1016/j.spmi.2018.05.029. |
[19] | L. Amin, “Influence of Fe substitution on structural and morphological properties of Zn1-xFexO thin films for varies applications,” Sohag J. Sci., vol. 0, no. 0, pp. 0–0, Jan. 2023, doi: 10.21608/sjsci.2022.153658.1017. |
[20] | U. R. Gudla et al., “Optical and luminescence properties of pure, iron-doped, and glucose capped ZnO nanoparticles,” Results Phys., vol. 19, p. 103508, Dec. 2020, doi: 10.1016/j.rinp.2020.103508. |
[21] | F. B. Dejene, “Characterization of low-temperature-grown ZnO nanoparticles: The effect of temperature on growth,” J. Phys. Commun., vol. 6, no. 7, p. 075011, Jul. 2022, doi: 10.1088/2399-6528/ac8049. |
[22] | N. Mohamed Basith, J. Judith Vijaya, L. John Kennedy, M. Bououdina, R. Shenbhagaraman, and R. Jayavel, “Influence of Fe-Doping on the Structural, Morphological, Optical, Magnetic and Antibacterial Effect of ZnO Nanostructures,” J. Nanosci. Nanotechnol., vol. 16, no. 2, pp. 1567–1577, Feb. 2016, doi: 10.1166/jnn.2016.10756. |
[23] | M. Suchea, S. Christoulakis, M. Katharakis, N. Vidakis, and E. Koudoumas, “Influence of thickness and growth temperature on the optical and electrical properties of ZnO thin films,” Thin Solid Films, vol. 517, no. 15, pp. 4303–4306, Jun. 2009, doi: 10.1016/j.tsf.2008.11.143. |
[24] | N. Madkhali, “Analysis of Structural, Optical, and Magnetic Properties of (Fe,Co) Co-Doped ZnO Nanoparticles Synthesized under UV Light,” Condens. Matter, vol. 7, no. 4, p. 63, Nov. 2022, doi: 10.3390/condmat7040063. |
[25] | S. Ilican, Y. Özdemir, M. Caglar, and Y. Caglar, “Temperature dependence of the optical band gap of sol-gel derived Fe-doped ZnO films,” Optik, vol. 127, no. 20, pp. 8554–8561, Oct. 2016, doi: 10.1016/j.ijleo.2016.06.074. |
[26] | Munirah, Z. R. Khan, A. Aziz, Mohd. S. Khan, and M. U. Khandaker, “Influence of zinc concentration on band gap and sub-band gap absorption on ZnO nanocrystalline thin films sol-gel grown,” Mater. Sci.-Pol., vol. 35, no. 1, pp. 246–253, Feb. 2017, doi: 10.1515/msp-2017-0039. |
[27] | N. Üzar, “Effect of 15% Fe doping on the structural, optical, electrical, and thermoelectric properties of ZnO thin films,” Phys. B Condens. Matter, vol. 704, p. 417045, May 2025, doi: 10.1016/j.physb.2025.417045. |
[28] | S. L. Jenish et al., “Improved optical and electrical properties of Fe doped ZnO nanostructures facilely deposited by low-cost SILAR method for photosensor applications,” Surf. Interfaces, vol. 31, p. 102071, Jul. 2022, doi: 10.1016/j.surfin.2022.102071. |