[1] | Repins, I., Contreras, M. A., Egaas, B., DeHart, C., Scharf, J., Perkins, C. L., ... & Noufi, R. (2008). 19· 9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81· 2% fill factor. Progress in Photovoltaics: Research and applications, 16(3), 235-239. |
[2] | Tsukazaki, A., Ohtomo, A., Onuma, T., Ohtani, M., Makino, T., Sumiya, M., ... & Kawasaki, M. (2005). Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nature materials, 4(1), 42-46. |
[3] | Lee, K. M., Lai, C. W., Ngai, K. S., & Juan, J. C. (2016). Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water research, 88, 428-448. |
[4] | Chen, X., Wu, Z., Liu, D., & Gao, Z. (2017). Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale research letters, 12, 1-10. |
[5] | Ouyang, W., Chen, J., Shi, Z., & Fang, X. (2021). Self-powered UV photodetectors based on ZnO nanomaterials. Applied physics reviews, 8(3). |
[6] | Patel, M., Song, J., Kim, D. W., & Kim, J. (2022). Carrier transport and working mechanism of transparent photovoltaic cells. Applied Materials Today, 26, 101344. |
[7] | Lu, L., Li, R., Fan, K., & Peng, T. (2010). Effects of annealing conditions on the photoelectrochemical properties of dye-sensitized solar cells made with ZnO nanoparticles. Solar Energy, 84(5), 844-853. |
[8] | Lyons, J. L., Janotti, A., & Van de Walle, C. G. (2009). Why nitrogen cannot lead to p-type conductivity in ZnO. Applied Physics Letters, 95(25). |
[9] | Zhang, Y. G., Zhang, G. B., & Xu Wang, Y. (2011). First-principles study of the electronic structure and optical properties of Ce-doped ZnO. Journal of Applied Physics, 109(6). |
[10] | Ungula, J., Kiprotich, S., Swart, H. C., & Dejene, B. F. (2022). Investigation on the material properties of ZnO nanorods deposited on Ga-doped ZnO seeded glass substrate: Effects of CBD precursor concentration. Surface and Interface Analysis, 54(10), 1023-1031. |
[11] | Ungula, J. (2015). Growth and characterization of ZnO nanoparticles by sol-gel process (Doctoral dissertation, University of the Free State (Qwaqwa Campus)). |
[12] | Aksoy, S., Polat, O., Gorgun, K., Caglar, Y., & Caglar, M. (2020). Li doped ZnO based DSSC: Characterization and preparation of nanopowders and electrical performance of its DSSC. Physica E: Low-dimensional Systems and Nanostructures, 121, 114127. |
[13] | Lin, C. Y., Lai, Y. H., Chen, H. W., Chen, J. G., Kung, C. W., Vittal, L. R., & Ho, K. C. (2011). Highly efficient dye-sensitized solar cell with a ZnO nanosheet-based photoanode. Energy & Environmental Science, 4(9), 3448-3455. |
[14] | Quintana, M., Edvinsson, T., Hagfeldt, A., & Boschloo, G. (2007). Comparison of dye-sensitized ZnO and TiO2 solar cells: studies of charge transport and carrier lifetime. The Journal of Physical Chemistry C, 111(2), 1035-1041. |
[15] | Freeman, C. L., Claeyssens, F., Allan, N. L., & Harding, J. H. (2006). Graphitic nanofilms as precursors to wurtzite films: theory. Physical review letters, 96(6), 066102. |
[16] | Freeman, C. L., Claeyssens, F., Allan, N. L., & Harding, J. H. (2006). Graphitic nanofilms as precursors to wurtzite films: theory. Physical review letters, 96(6), 066102. |
[17] | Tusche, C., Meyerheim, H. L., & Kirschner, J. (2007). Observation of depolarized ZnO (0001) monolayers: formation of unreconstructed planar sheets. Physical review letters, 99(2), 026102. |
[18] | Weirum, G., Barcaro, G., Fortunelli, A., Weber, F., Schennach, R., Surnev, S., & Netzer, F. P. (2010). Growth and surface structure of zinc oxide layers on a Pd (111) surface. The Journal of Physical Chemistry C, 114(36), 15432-15439. |
[19] | He, A. L., Wang, X. Q., Wu, R. Q., Lu, Y. H., & Feng, Y. P. (2010). Adsorption of an Mn atom on a ZnO sheet and nanotube: A density functional theory study. Journal of Physics: Condensed Matter, 22(17), 175501. |
[20] | Schmidt, T. M., Miwa, R. H., & Fazzio, A. (2010). Ferromagnetic coupling in a Co-doped graphenelike ZnO sheet. Physical Review B, 81(19), 195413. |
[21] | Ren, J., Zhang, H., & Cheng, X. (2013). Electronic and magnetic properties of all 3d transition-metal-doped ZnO monolayers. International Journal of Quantum Chemistry, 113(19), 2243-2250. |
[22] | Zheng, F. B., Zhang, C. W., Wang, P. J., & Luan, H. X. (2012). First-principles prediction of the electronic and magnetic properties of nitrogen-doped ZnO nanosheets. Solid state communications, 152(14), 1199-1202. |
[23] | Guo, H., Zhao, Y., Lu, N., Kan, E., Zeng, X. C., Wu, X., & Yang, J. (2012). Tunable magnetism in a nonmetal-substituted ZnO monolayer: a first-principles study. The Journal of Physical Chemistry C, 116(20), 11336-11342. |
[24] | Zhang, W. X., T. Li, C. He, X. L. Wu, L. Duan, H. Li, L. Xu, and S. B. Gong. "First-principle study on Ag-2N heavy codoped of p-type graphene-like ZnO nanosheet." Solid State Communications 204 (2015): 47-50. |
[25] | Ungula, J. (2018). Formation and characterization of novel nanostructured un-doped and Ga-doped ZnO transparent conducting thin films for photoelectrode (Doctoral dissertation, University of the Free State (Qwaqwa Campus)). |
[26] | Omidvar, A. (2018). Indium-doped and positively charged ZnO nanoclusters: versatile materials for CO detection. Vacuum, 147, 126-133. |
[27] | Khuili, M., El Hallani, G., Fazouan, N., Abou El Makarim, H., & Atmani, E. H. (2019). First-principles calculation of (Al, Ga) co-doped ZnO. Computational Condensed Matter, 21, e00426. |
[28] | Vettumperumal, R., Kalyanaraman, S., & Thangavel, R. (2015). Optical constants and near infrared emission of Er doped ZnO sol–gel thin films. Journal of Luminescence, 158, 493-500. |
[29] | Tan, C., Xu, D., Zhang, K., Tian, X., & Cai, W. (2016). Electronic and magnetic properties of rare-earth metals doped ZnO monolayer. Journal of Nanomaterials, 16(1), 356-356. |
[30] | da Fonseca, A. F. V., Siqueira, R. L., Landers, R., Ferrari, J. L., Marana, N. L., Sambrano, J. R., ... & Schiavon, M. A. (2018). A theoretical and experimental investigation of Eu-doped ZnO nanorods and its application on dye sensitized solar cells. Journal of Alloys and Compounds, 739, 939-947. |
[31] | Chamanzadeh, Z., Ansari, V., & Zahedifar, M. (2021). Investigation on the properties of La-doped and Dy-doped ZnO nanorods and their enhanced photovoltaic performance of Dye-Sensitized Solar Cells. Optical Materials, 112, 110735. |
[32] | Tan, C., Xu, D., Zhang, K., Tian, X., & Cai, W. (2016). Electronic and magnetic properties of rare-earth metals doped ZnO monolayer. Journal of Nanomaterials, 16(1), 356-356. |
[33] | Mary, J. A., Vijaya, J. J., Dai, J. H., Bououdina, M., Kennedy, L. J., & Song, Y. (2015). Experimental and DFT studies of structure, optical and magnetic properties of (Zn1− 2xCexCox) O nanopowders. Journal of Molecular Structure, 1084, 155-164. |
[34] | Wen, J. Q., Zhang, J. M., Chen, G. X., Wu, H., & Yang, X. (2018). The structural, electronic and optical properties of Nd doped ZnO using first-principles calculations. Physica E: Low-dimensional Systems and Nanostructures, 98, 168-173. |
[35] | Khuili, M., Fazouan, N., Abou El Makarim, H., Atmani, E. H., Rai, D. P., & Houmad, M. (2020). First-principles calculations of rare earth (RE= Tm, Yb, Ce) doped ZnO: Structural, optoelectronic, magnetic, and electrical properties. Vacuum, 181, 109603. |
[36] | Nekvindova, P., Cajzl, J., Mackova, A., Malinský, P., Oswald, J., Boettger, R., & Yatskiv, R. (2020). Er implantation into various cuts of ZnO–experimental study and DFT modelling. Journal of Alloys and Compounds, 816, 152455. |
[37] | Zhang, F., Gan, Q., Yan, M., Cui, H., Zhang, H., Chao, D., ... & Zhang, W. (2016). The first-principles study of electronic structures, magnetic and optical properties for Ce-doped ZnO. Integrated Ferroelectrics, 172(1), 87-96. |
[38] | Wen, J. Q., Han, Y. S., Yang, X., & Zhang, J. M. (2019). Computational research of electronic, optical and magnetic properties of Ce and Nd co-doped ZnO. Journal Of Physics And Chemistry Of Solids, 125, 90-95. |
[39] | Mulwa, W. M., Ouma, C. N., Onani, M. O., & Dejene, F. B. (2016). Energetic, electronic and optical properties of lanthanide doped TiO2: An ab initio LDA+ U study. Journal of Solid State Chemistry, 237, 129-137. |
[40] | Agapito, L. A., Curtarolo, S., & Nardelli, M. B. (2015). Reformulation of DFT+ U as a pseudohybridhubbard density functional for accelerated materials discovery. Physical Review X, 5(1), 011006. |
[41] | Deng, X. Y., Liu, G. H., Jing, X. P., & Tian, G. S. (2014). On-site correlation of p-electron in d10 semiconductor zinc oxide. International Journal of Quantum Chemistry, 114(7), 468-472. |
[42] | Harun, K., Salleh, N. A., Deghfel, B., Yaakob, M. K., & Mohamad, A. A. (2020). DFT+ U calculations for electronic, structural, and optical properties of ZnO wurtzite structure: A review. Results in Physics, 16, 102829. |
[43] | S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study, Phys. Rev. B. 57 (1998) 1505–1509. |
[44] | Cococcioni, M., & De Gironcoli, S. (2005). Linear response approach to the calculation of the effective interaction parameters in the LDA+ U method. Physical Review B, 71(3), 035105. |
[45] | Ma, X., Wu, Y., Lv, Y., & Zhu, Y. (2013). Correlation effects on lattice relaxation and electronic structure of ZnO within the GGA+ U formalism. The Journal of Physical Chemistry C, 117(49), 26029-26039. |
[46] | Huang, G. Y., Wang, C. Y., & Wang, J. T. (2012). Detailed check of the LDA+ U and GGA+ U corrected method for defect calculations in wurtzite ZnO. Computer Physics Communications, 183(8), 1749-1752. |
[47] | Jain, A., Montoya, J., Dwaraknath, S., Zimmermann, N. E., Dagdelen, J., Horton, M., ... & Persson, K. (2020). The materials project: Accelerating materials design through theory-driven data and tools. Handbook of Materials Modeling: Methods: Theory and Modeling, 1751-1784. |
[48] | Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., &Wentzcovitch, R. M. (2009). QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of physics: Condensed matter, 21(39), 395502. |
[49] | Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical review letters, 77(18), 3865. |
[50] | Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical review, 140(4A), A1133. |
[51] | Solola, G. T., Bamgbose, M. K., Adebambo, P. O., Ayedun, F., & Adebayo, G. A. (2023). First-principles investigations of structural, electronic, vibrational, and thermoelectric properties of half-Heusler VYGe (Y= Rh, Co, Ir) compounds. Computational Condensed Matter, e00827. |
[52] | Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical review B, 13(12), 5188-5192. |
[53] | Motornyi, O., Raynaud, M., Dal Corso, A., & Vast, N. (2018, December). Simulation of electron energy loss spectra with the turboEELS and thermo_pw codes. In Journal of Physics: Conference Series (Vol. 1136, No. 1, p. 012008). IOP Publishing. |
[54] | Litim, D. F., & Manuel, C. (2002). Semi-classical transport theory for non-Abelian plasmas. Physics reports, 364(6), 451-539. |
[55] | Madsen, G. K., & Singh, D. J. (2006). BoltzTraP. A code for calculating band-structure dependent quantities. Computer Physics Communications, 175(1), 67-71. |
[56] | Topsakal, M., Cahangirov, S., Bekaroglu, E., & Ciraci, S. (2009). First-principles study of zinc oxide honeycomb structures. Physical Review B, 80(23), 235119. |
[57] | Tan, C., Sun, D., Xu, D., Tian, X., & Huang, Y. (2016). Tuning electronic structure and optical properties of ZnO monolayer by Cd doping. Ceramics International, 42(9), 10997-11002. |
[58] | Momma, K., & Izumi, F. (2011). VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of applied crystallography, 44(6), 1272-1276. |
[59] | Fang, D. Q., Rosa, A. L., Zhang, R. Q., & Frauenheim, T. (2010). Theoretical exploration of the structural, electronic, and magnetic properties of ZnO nanotubes with vacancies, antisites, and nitrogen substitutional defects. The Journal of Physical Chemistry C, 114(13), 5760-5766. |
[60] | Tu, Z. C. (2010). First-principles study on physical properties of a single ZnO monolayer with graphene-like structure. Journal of Computational and Theoretical Nanoscience, 7(6), 1182-1186. |
[61] | Tan, C., Sun, D., Tian, X., & Huang, Y. (2016). First-principles investigation of phase stability, electronic structure and optical properties of MgZnO monolayer. Materials, 9(11), 877. |
[62] | Haq, B. U., AlFaify, S., Alrebdi, T. A., Ahmed, R., Al-Qaisi, S., Taib, M. F. M., ... & Zahra, S. (2021). Investigations of optoelectronic properties of novel ZnO monolayers: A first-principles study. Materials Science and Engineering: B, 265, 115043. |
[63] | Abderrahmane, B., Djamila, A., Chaabia, N., & Fodil, R. (2020). Improvement of ZnO nanorods photoelectrochemical, optical, structural and morphological characterizations by cerium ions doping. Journal of Alloys and Compounds, 829, 154498. |
[64] | Ullah Awan, S., Hasanain, S. K., Bertino, M. F., & Hassnain Jaffari, G. (2012). Ferromagnetism in Li doped ZnO nanoparticles: The role of interstitial Li. Journal of Applied Physics, 112(10). |
[65] | Bett, K., & Kiprotich, S. (2024). Effects of Stirring Speed of Precursor Solution on the Structural Optical and Morphological Properties of ZnO Al Ga CoDoped Nanoparticles Synthesized via a Facile Sol Gel Technique. |
[66] | Ungula, J. (2015). Growth and characterization of ZnO nanoparticles by sol-gel process (Doctoral dissertation, University of the Free State (Qwaqwa Campus)). |
[67] | Jantrasee, S., Moontragoon, P., & Pinitsoontorn, S. (2016). Thermoelectric properties of Al-doped ZnO: experiment and simulation. Journal of Semiconductors, 37(9), 092002. |
[68] | Papadimitriou, D. N. (2022). Engineering of optical and electrical properties of electrodeposited highly doped Al: ZnO and In: ZnO for cost-effective photovoltaic device technology. Micromachines, 13(11), 1966. |
[69] | El Hachimi, A. G., Zaari, H., Benyoussef, A., El Yadari, M., & El Kenz, A. (2014). First-principles prediction of the magnetism of 4f rare-earth-metal-doped wurtzite zinc oxide. Journal of rare earths, 32(8), 715-721. |
[70] | Wu, Q., Liu, G., Shi, H., Zhang, B., Ning, J., Shao, T., ... & Zhang, F. (2023). Impact of Nd doping on electronic, optical, and magnetic properties of ZnO: A GGA+ U study. Molecules, 28(21), 7416. |
[71] | Deng, S. H., Duan, M. Y., Xu, M., & He, L. (2011). Effect of La doping on the electronic structure and optical properties of ZnO. Physica B: Condensed Matter, 406(11), 2314-2318. |
[72] | Meulenkamp, E. A. (1999). Electron transport in nanoparticulate ZnO films. The Journal of Physical Chemistry B, 103(37), 7831-7838. |
[73] | Wang, B., Nagase, S., Zhao, J., & Wang, G. (2007). The stability and electronic structure of single-walled ZnO nanotubes by density functional theory. Nanotechnology, 18(34), 345706. |
[74] | Namisi, M. M., Musembi, R. J., Mulwa, W. M., &Aduda, B. O. (2023). DFT study of cubic, tetragonal and trigonal structures of KGeCl3 perovskites for photovoltaic applications. Computational Condensed Matter, 34, e00772. |
[75] | Harun, K., Salleh, N. A., Deghfel, B., Yaakob, M. K., & Mohamad, A. A. (2020). DFT+ U calculations for electronic, structural, and optical properties of ZnO wurtzite structure: A review. Results in Physics, 16, 102829. |
[76] | Berrezoug, H. I., Merad, A. E., Zerga, A., & Hassoun, Z. S. (2015). Simulation and modeling of structural stability, electronic structure and optical properties of ZnO. Energy Procedia, 74, 1517-1524. |
[77] | Solola, G. T., Bamgbose, M. K., Adebambo, P. O., Ayedun, F., & Adebayo, G. A. (2023). First-principles investigations of structural, electronic, vibrational, and thermoelectric properties of half-Heusler VYGe (Y= Rh, Co, Ir) compounds. Computational Condensed Matter, e00827. |