[1] | A. Roy, O. Bulut, S. Some, A. Kumar Mandal, M. Deniz Yilmaz, Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity, RSC Adv. 9 (2019) 2673–2702. https://doi.org/10.1039/c8ra08982e. |
[2] | A. Verma, S. Tyagi, A. Verma, J. Singh, P. Joshi, Optimization of Different Reaction Conditions for the Bio-Inspired Synthesis of Silver Nanoparticles Using Aqueous Extract of Solanum nigrum Leaves, J. Nanomater. Mol. Nanotechnol. 06 (2017) 2–5. https://doi.org/10.4172/2324-8777.1000214. |
[3] | J. Li, Y. Li, H. Wu, S. Naraginti, Y. Wu, Facile synthesis of ZnO nanoparticles by Actinidia deliciosa fruit peel extract: Bactericidal, anticancer and detoxification properties, Environ. Res. 200 (2021) 111433. https://doi.org/10.1016/J.ENVRES.2021.111433. |
[4] | B. Ankudze, D. Neglo, F. Nsiah, Green synthesis of silver nanoparticles from discarded shells of velvet tamarind (Dialium cochinchinense) and their antimicrobial synergistic potentials and biofilm inhibition properties, BioMetals. 9 (2023) 1–14. https://doi.org/10.1007/S10534-023-00534-5/METRICS. |
[5] | Z. Bedlovičová, I. Strapáč, M. Baláž, A. Salayová, A brief overview on antioxidant activity determination of silver nanoparticles, Molecules. 25 (2020) 1–24. https://doi.org/10.3390/molecules25143191. |
[6] | R. Vishwanath, B. Negi, Conventional and green methods of synthesis of silver nanoparticles and their antimicrobial properties, Curr. Res. Green Sustain. Chem. 4 (2021) 100205. https://doi.org/10.1016/J.CRGSC.2021.100205. |
[7] | Z.A. Ratan, M.F. Haidere, M. Nurunnabi, S.M. Shahriar, A.J.S. Ahammad, Y.Y. Shim, M.J.T. Reaney, J.Y. Cho, Green Chemistry Synthesis of Silver Nanoparticles and Their Potential Anticancer Effects, Cancers (Basel). 12 (2020). https://doi.org/10.3390/CANCERS12040855. |
[8] | P. Padmavathi, P.S. Raghu, V.D. Reddy, S. Bulle, S.B. Marthadu, P. Maturu, N.C. Varadacharyulu, Chronic cigarette smoking-induced oxidative/nitrosative stress in human erythrocytes and platelets, Mol. Cell. Toxicol. 14 (2018) 27–34. https://doi.org/10.1007/S13273-018-0004-6/METRICS. |
[9] | P.D. Sly, S.A. Cormier, S. Lomnicki, J.N. Harding, K. Grimwood, G. University, environmentally persistent free radicals: Linking air pollution and poor respiratory health? Am. J. Respir. Crit. Care Med. 200 (2019) 1062–1063. https://doi.org/10.1164/RCCM.201903-0675LE/SUPPL_FILE/DISCLOSURES.PDF. |
[10] | L.A. Pham-Huy, H. He, C. Pham-Huy, Free Radicals, Antioxidants in Disease and Health, Int. J. Biomed. Sci. 4 (2008) 89. https://doi.org/10.59566/ijbs.2008.4089. |
[11] | U. Förstermann, Nitric oxide and oxidative stress in vascular disease, Pflugers Arch. 459 (2010) 923–939. https://doi.org/10.1007/S00424-010-0808-2. |
[12] | M. Jenab, E. Riboli, P. Ferrari, J. Sabate, N. Slimani, T. Norat, M. Friesen, A. Tjønneland, A. Olsen, K. Overvad, M.C. Boutron-Ruault, F. Clavel-Chapelon, M. Touvier, H. Boeing, M. Schulz, J. Linseisen, G. Nagel, A. Trichopoulou, A. Naska, E. Oikonomou, V. Krogh, S. Panico, G. Masala, C. Sacerdote, R. Tumino, P.H. Peeters, M.E. Numans, H.B. Bueno-de-Mesquita, F.L. Büchner, E. Lund, G. Pera, C.N. Sanchez, M.J. Sánchez, L. Arriola, A. Barricarte, J.R. Quirós, G. Hallmans, R. Stenling, G. Berglund, S. Bingham, K.T. Khaw, T. Key, N. Allen, F. Carneiro, U. Mahlke, G. Del Giudice, D. Palli, R. Kaaks, C.A. Gonzalez, Plasma and dietary vitamin C levels and risk of gastric cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC-EURGAST), Carcinogenesis. 27 (2006) 2250–2257. https://doi.org/10.1093/CARCIN/BGL096. |
[13] | C. Manach, A. Scalbert, C. Morand, C. Rémésy, L. Jiménez, Polyphenols: food sources and bioavailability, Am. J. Clin. Nutr. 79 (2004) 727–747. https://doi.org/10.1093/AJCN/79.5.727. |
[14] | A.N. Li, S. Li, Y.J. Zhang, X.R. Xu, Y.M. Chen, H. Bin Li, Resources and Biological Activities of Natural Polyphenols, Nutrients. 6 (2014) 6020–6047. https://doi.org/10.3390/NU6126020. |
[15] | A. Gęgotek, E. Skrzydlewska, Antioxidative and Anti-Inflammatory Activity of Ascorbic Acid, Antioxidants. 11 (2022) 1–18. https://doi.org/10.3390/ANTIOX11101993. |
[16] | R.M. Russell, S.A.R. Paiva, Beta-carotene and other carotenoids as antioxidants, J. Am. Coll. Nutr. 18 (1999) 426–433. https://doi.org/10.1080/07315724.1999.10718880. |
[17] | C. Gaucher, A. Boudier, J. Bonetti, I. Clarot, P. Leroy, M. Parent, Glutathione: Antioxidant Properties Dedicated to Nanotechnologies, Antioxidants. 7 (2018) 1–20. https://doi.org/10.3390/ANTIOX7050062. |
[18] | M. Stoia, S. Oancea, Low-Molecular-Weight Synthetic Antioxidants: Classification, Pharmacological Profile, Effectiveness and Trends, Antioxidants. 11 (2022) 1–30. https://doi.org/10.3390/ANTIOX11040638. |
[19] | X. Ge, Z. Cao, L. Chu, The Antioxidant Effect of the Metal and Metal-Oxide Nanoparticles, Antioxidants. 11 (2022). https://doi.org/10.3390/ANTIOX11040791. |
[20] | A. Sabine, GLOBAL PROSPECTS FOR MAJOR TROPICAL FRUITS 1 Short-term outlook, challenges and opportunities in a vibrant global marketplace, Food Outlook. November (2017) 69–81. |
[21] | G.S. Tkemaladze, K.A. Makhashvili, Climate changes and photosynthesis, Ann. Agrar. Sci. 14 (2016) 119–126. https://doi.org/10.1016/J.AASCI.2016.05.012. |
[22] | G. Das, J.K. Patra, N. Basavegowda, C.N. Vishnuprasad, H.S. Shin, Comparative study on antidiabetic, cytotoxicity, antioxidant and antibacterial properties of biosynthesized silver nanoparticles using outer peels of two varieties of ipomoea batatas (L.) lam, Int. J. Nanomedicine. 14 (2019) 4741–4754. https://doi.org/10.2147/IJN.S210517. |
[23] | F.U. Asoiro, S.L. Ezeoha, G.I. Ezenne, C.B. Ugwu, Chemical and Mechanical Properties of Velvet Tamarind Fruit (Dalium Guineese), Niger. J. Technol. 36 (2017) 252–260. |
[24] | O. Zacchaeus, A. Iyadunni, A. Johnson, U. Daubotei, Black Velvet Tamarind: Phytochemical Analysis, Antiradical and Antimicrobial Properties of the Seed Extract for Human Therapeutic and Health Benefits, J. Phytopharm. 10 (2021) 249–255. https://doi.org/10.31254/phyto.2021.10406. |
[25] | U.E. Odoh, Establishment of Quality Parameters and Pharmacognostical Profiling of Dialium guinneense, World J. Innov. Res. 8 (2020) 47–46. |
[26] | B. Ankudze, D. Neglo, F. Nsiah, Green synthesis of silver nanoparticles from discarded shells of velvet tamarind (Dialium cochinchinense) and their antimicrobial synergistic potentials and biofilm inhibition properties, BioMetals. 37 (2024) 143–156. https://doi.org/10.1007/S10534-023-00534-5/METRICS. |
[27] | A. Loiseau, V. Asila, G. Boitel-Aullen, M. Lam, M. Salmain, S. Boujday, Silver-Based Plasmonic Nanoparticles for and Their Use in Biosensing, Biosensors. 9 (2019) 78. https://doi.org/10.3390/BIOS9020078. |
[28] | D. Philip, Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 73 (2009) 374–381. https://doi.org/10.1016/j.saa.2009.02.037. |
[29] | F. Nur, E. Akdemir, İ. Gülçin, B. Karagöz, R. Soslu, S.H. Alwasel, I. Gü Lçin, B. Karagö Z, DPPH Radical Scavenging Assay, Process. 2023, Vol. 11, Page 2248. 11 (2023) 2248. https://doi.org/10.3390/PR11082248. |
[30] | R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radic. Biol. Med. 26 (1999) 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3. |
[31] | A. Floegel, D.O. Kim, S.J. Chung, S.I. Koo, O.K. Chun, Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods, J. Food Compos. Anal. 24 (2011) 1043–1048. https://doi.org/10.1016/J.JFCA.2011.01.008. |
[32] | B.Y. Vigbedor, C. Osei Akoto, D. Neglo, Isolation and Identification of Flavanone Derivative Eriodictyol from the Methanol Extract of Afzelia africana Bark and Its Antimicrobial and Antioxidant Activities, Evidence-Based Complement. Altern. Med. 2023 (2023) 1–12. https://doi.org/10.1155/2023/9345047. |
[33] | N.N.S. Nik Mohamed Kamal, W.H. Tung, Y.K. Yong, C.K. Lee, V. Lim, Biogenic Silver Nanoparticles of Clinacanthus nutans as Antioxidant with Antimicrobial and Cytotoxic Effects, Bioinorg. Chem. Appl. 2021 (2021) 1–11. https://doi.org/10.1155/2021/9920890. |