[1] | A. Orlando, F. Franceschini, C. Muscas, S. Pidkova, M. Bartoli, M. Rovere, A. Tagliaferro, A Comprehensive Review on Raman Spectroscopy Applications, Chemosens. 2021, Vol. 9, Page 262. 9 (2021) 262. https://doi.org/10.3390/CHEMOSENSORS9090262. |
[2] | C.F.G.C. Geraldes, Introduction to Infrared and Raman-Based Biomedical Molecular Imaging and Comparison with Other Modalities, Molecules. 25 (2020) 5547. https://doi.org/10.3390/MOLECULES25235547. |
[3] | B. Chase, Fourier transform Raman spectroscopy, Mikrochim. Acta. 93 (1987) 81–91. https://doi.org/10.1007/BF01201684/METRICS. |
[4] | B. Robert, Resonance Raman spectroscopy, Photosynth. Res. 101 (2009) 147–155. https://doi.org/10.1007/S11120-009-9440-4/METRICS. |
[5] | B. Sharma, R.R. Frontiera, A.-I. Henry, E. Ringe, R.P. Van Duyne, SERS: Materials, applications, and the future, Mater. Today. 15 (2012) 16–25. https://doi.org/10.1016/S1369-7021(12)70017-2. |
[6] | X.X. Han, R.S. Rodriguez, C.L. Haynes, Y. Ozaki, B. Zhao, Surface-enhanced Raman spectroscopy, Nat. Rev. Methods Prim. 1 (2022) 1–17. https://doi.org/10.1038/s43586-021-00083-6. |
[7] | J. Divya, S. Selvendran, A.S. Raja, A. Sivasubramanian, Surface plasmon based plasmonic sensors: A review on their past, present and future, Biosens. Bioelectron. X. 11 (2022) 100175. https://doi.org/10.1016/J.BIOSX.2022.100175. |
[8] | V. Yesudasu, H.S. Pradhan, R.J. Pandya, Recent progress in surface plasmon resonance based sensors: A comprehensive review, Heliyon. 7 (2021) e06321. https://doi.org/10.1016/J.HELIYON.2021.E06321. |
[9] | Q. Tong, W. Wang, Y. Fan, L. Dong, Recent progressive preparations and applications of silver-based SERS substrates, TrAC Trends Anal. Chem. 106 (2018) 246–258. https://doi.org/10.1016/J.TRAC.2018.06.018. |
[10] | C. Li, Y. Huang, X. Li, Y. Zhang, Q. Chen, Z. Ye, Z. Alqarni, S.E.J. Bell, Y. Xu, Towards practical and sustainable SERS: a review of recent developments in the construction of multifunctional enhancing substrates, J. Mater. Chem. C. 9 (2021) 11517–11552. https://doi.org/10.1039/D1TC02134F. |
[11] | J. Jabłońska, K. Jankowski, M. Tomasik, D. Cykalewicz, P. Uznański, S. Całuch, M. Szybowicz, J. Zakrzewska, P. Mazurek, Preparation of silver nanoparticles in a high voltage AC arc in water, SN Appl. Sci. 3 (2021) 1–10. https://doi.org/10.1007/S42452-021-04177-4/FIGURES/10. |
[12] | G. Herrera, A. Padilla, S. Hernandez-Rivera, Surface Enhanced Raman Scattering (SERS) Studies of Gold and Silver Nanoparticles Prepared by Laser Ablation, Nanomaterials. 3 (2013) 158–172. https://doi.org/10.3390/nano3010158. |
[13] | D. Bokov, A. Turki Jalil, S. Chupradit, W. Suksatan, M. Javed Ansari, I.H. Shewael, G.H. Valiev, E. Kianfar, Nanomaterial by Sol-Gel Method: Synthesis and Application, Adv. Mater. Sci. Eng. 2021 (2021) 1–7. https://doi.org/10.1155/2021/5102014. |
[14] | F.P. Mehr, M. Khanjani, P. Vatani, Synthesis of nano-Ag particles using sodium borohydride, Orient. J. Chem. 31 (2015) 1831–1833. https://doi.org/10.13005/ojc/310367. |
[15] | R. Vishwanath, B. Negi, Conventional and green methods of synthesis of silver nanoparticles and their antimicrobial properties, Curr. Res. Green Sustain. Chem. 4 (2021) 100205. https://doi.org/10.1016/J.CRGSC.2021.100205. |
[16] | P. Chettri, V.S. Vendamani, A. Tripathi, M.K. Singh, A.P. Pathak, A. Tiwari, Green synthesis of silver nanoparticle-reduced graphene oxide using Psidium guajava and its application in SERS for the detection of methylene blue, Appl. Surf. Sci. 406 (2017) 312–318. https://doi.org/10.1016/j.apsusc.2017.02.073. |
[17] | C. Luna, V.H.G. Chávez, E.D. Barriga-Castro, N.O. Núñez, R. Mendoza-Reséndez, Biosynthesis of silver fine particles and particles decorated with nanoparticles using the extract of Illicium verum (star anise) seeds, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 141 (2015) 43–50. https://doi.org/10.1016/j.saa.2014.12.076. |
[18] | M.R. Bindhu, V. Sathe, M. Umadevi, Synthesis, characterization and SERS activity of biosynthesized silver nanoparticles, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 115 (2013) 409–415. https://doi.org/10.1016/j.saa.2013.06.047. |
[19] | N.G. Girón-Vázquez, C.M. Gómez-Gutiérrez, C.A. Soto-Robles, O. Nava, E. Lugo-Medina, V.H. Castrejón-Sánchez, A.R. Vilchis-Nestor, P.A. Luque, Study of the effect of Persea americana seed in the green synthesis of silver nanoparticles and their antimicrobial properties, Results Phys. 13 (2019) 102142. https://doi.org/10.1016/j.rinp.2019.02.078. |
[20] | S.L. Smitha, K.G. Gopchandran, N.R. Nair, K.M. Nampoothiri, T.R. Ravindran, SERS and Antibacterial Active Green Synthesized Gold Nanoparticles, Plasmonics. 7 (2012) 515–524. https://doi.org/10.1007/s11468-012-9337-5. |
[21] | A. Vanaamudan, H. Soni, P. Padmaja Sudhakar, Palm shell extract capped silver nanoparticles - As efficient catalysts for degradation of dyes and as SERS substrates, J. Mol. Liq. 215 (2016) 787–794. https://doi.org/10.1016/j.molliq.2016.01.027. |
[22] | E.D.B. Santos, N.V. Madalossi, F.A. Sigoli, I.O. Mazali, Silver nanoparticles: Green synthesis, self-assembled nanostructures and their application as SERS substrates, New J. Chem. 39 (2015) 2839–2846. https://doi.org/10.1039/c4nj02239d. |
[23] | B. Ankudze, D. Neglo, F. Nsiah, Green synthesis of silver nanoparticles from discarded shells of velvet tamarind (Dialium cochinchinense) and their antimicrobial synergistic potentials and biofilm inhibition properties, BioMetals. 9 (2023) 1–14. https://doi.org/10.1007/S10534-023-00534-5/METRICS. |
[24] | F.U. Asoiro, S.L. Ezeoha, G.I. Ezenne, C.B. Ugwu, Chemical and Mechanical Properties of Velvet Tamarind Fruit (Dalium Guineese), Niger. J. Technol. 36 (2017) 252–260. |
[25] | O. Zacchaeus, A. Iyadunni, A. Johnson, U. Daubotei, Black Velvet Tamarind: Phytochemical Analysis, Antiradical and Antimicrobial Properties of the Seed Extract for Human Therapeutic and Health Benefits, J. Phytopharm. 10 (2021) 249–255. https://doi.org/10.31254/phyto.2021.10406. |
[26] | U.E. Odoh, Establishment of Quality Parameters and Pharmacognostical Profiling of Dialium guinneense, World J. Innov. Res. 8 (2020) 47–46. |
[27] | C. Yuen, Magnetic field enriched surface enhanced resonance Raman spectroscopy for early malaria diagnosis, J. Biomed. Opt. 17 (2012) 017005. https://doi.org/10.1117/1.jbo.17.1.017005. |
[28] | N. Krithiga, A. Rajalakshmi, A. Jayachitra, Green Synthesis of Silver Nanoparticles Using Leaf Extracts of Clitoria ternatea and Solanum nigrum and Study of Its Antibacterial Effect against Common Nosocomial Pathogens , J. Nanosci. 2015 (2015) 1–8. https://doi.org/10.1155/2015/928204. |
[29] | M. Vanaja, G. Annadurai, Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity, Appl. Nanosci. 3 (2013) 217–223. https://doi.org/10.1007/s13204-012-0121-9. |
[30] | S.S. Shankar, A. Ahmad, M. Sastry, Geranium Leaf Assisted Biosynthesis of Silver Nanoparticles, Biotechnol. Prog. 19 (2003) 1627–1631. https://doi.org/10.1021/bp034070w. |
[31] | D. Philip, Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 73 (2009) 374–381. https://doi.org/10.1016/j.saa.2009.02.037. |
[32] | B. Ankudze, A. Philip, T.T. Pakkanen, A. Matikainen, P. Vahimaa, Highly active surface-enhanced Raman scattering (SERS) substrates based on gold nanoparticles infiltrated into SiO2 inverse opals, Appl. Surf. Sci. 387 (2016) 595–602. https://doi.org/10.1016/j.apsusc.2016.06.063. |
[33] | A.B.C. Mantilla, B.E. Matthews, Y. Gu, P.Z. El-Khoury, Selective Plasmon-Induced Oxidation of 4-Aminothiophenol on Silver Nanoparticles, J. Phys. Chem. C. 127 (2023) 8048–8053. https://doi.org/10.1021/ACS.JPCC.3C01204/ASSET/IMAGES/MEDIUM/JP3C01204_0005.GIF. |
[34] | X. Hu, T. Wang, L. Wang, S. Dong, Surface-enhanced raman scattering of 4-aminothiophenol self-assembled monolayers in sandwich structure with nanoparticle shape dependence: Off-surface plasmon resonance condition, J. Phys. Chem. C. 111 (2007) 6962–6969. https://doi.org/10.1021/jp0712194. |
[35] | A. Shiohara, Y. Wang, L.M. Liz-Marzán, Recent approaches toward creation of hot spots for SERS detection, J. Photochem. Photobiol. C Photochem. Rev. 21 (2014) 2–25. https://doi.org/10.1016/J.JPHOTOCHEMREV.2014.09.001. |
[36] | K. Sugawa, T. Akiyama, Y. Tanoue, T. Harumoto, S. Yanagida, A. Yasumori, S. Tomita, J. Otsuki, Particle size dependence of the surface-enhanced Raman scattering properties of densely arranged two-dimensional assemblies of Au(core)-Ag(shell) nanospheres, Phys Chem Chem Phys. 17 (2015) 21182–21189. https://doi.org/10.1039/c4cp05058d. |