[1] | Xu, L. Xing, R. Song, J. Xu, W. and Song, H. (2013). ZnO-SnO2 nanotubes surface engineered by Ag nanoparticles; synthesis, characterization and highly enhanced HCHO gas sensing properties. J. Meter. Chem. C 1, 2174-2182. |
[2] | Das, P. Sarmah, K. Hussain, N. Pratihar, S. Das, S. Bhattacharyya, P. Patil, S.A. Kim, H.-S. Iqbal, M. Khazie, A. and Bhattacharyya, S.S. (2016). Novel synthesis of an iron oxalate capped iron oxide nanomaterial; a unique soil conditioner and slow release eco-friendly source of iron sustenance in plants. RSC Adv. 6, 103012-103025. |
[3] | Sarmah, K. and Pratihar, S. (2017). Synthesis, characterization and photocatalytic application of iron oxalate capped Fe, Fe-Cu, Fe-Co, and Fe-Mn oxide nanomaterial. ACS Sustain. Chem. Eng. 5(1), 310-324. |
[4] | Bosi, S. Da Ros, T. Spalluto, G. and Prato, M. (2003). Fullerene derivatives; an attractive tool for biological applications. Eur. J. Med. Chem. 38, 913-923. |
[5] | Colvin, V.L.S. M.C. and Alivisatos, A. (1994). Light emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer.". Nature, 370: 354-357. |
[6] | Wang, Y. and H.N. (1991). Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties.". J Phys Chem, 95: 525-532. |
[7] | Naahidi, S. Jafari, M. Edalat, F. Raymond, K. Khademhosseini, A. and Chen, P. (2013). Biocompatibility of engineered nanoparticles for drug delivery. J. Control. Rel. 166, 182- 194. |
[8] | Cao, B. Liu, R. Huang, Z.X. and Ge, S. (2011). Mater. Lett. 65, 160. |
[9] | Nunes, J.P. Fernandes, B. Fertunato, E. Vilarinho, P. and Martins, R. (1999). Thin Solid Films. 337, 176–179. |
[10] | Hu, S.-H. Chen, Y.-C. Hwang, C.-C. Peng, C.-H. and Gong, D.-C. (2010). J. Alloy. Comp. 500 (2), L17–L21. |
[11] | Wang, A. Ng, H.P. Xu, Y. Li, Y. Zheng, Y. Yu, J. Han, F. Peng, F. and Fu, L. (2014). J. Nanomater. Article ID 451232. |
[12] | Chen, Y. Zhang, C. Huang, W. Situ, Y. and Huang, H. (2015). Mater. Lett. 141, 294–297. |
[13] | Chao, L.-C. Chiang, P.-C. Yang, S.-H. Huang, J.-W. Liau, C.-C. Chen, J.-S. and Su, C.-Y. (2006). Appl. Phys. Lett. 88 (25), Article ID 251111. |
[14] | Tien, H.N. Luan, V.H. Hoa, L.T. Khoa, N.T. Hahn, S.H. Chung, J.S. Shin, E.W. and Hur, S.H. (2013). Chem. Eng. J. 229, 126–133. |
[15] | Khorsand, Z.A. Majid, W.H.A. Wang, H.Z. Yousefi, R. Moradi, G.A. and Ren, Z.F. (2013). Ultrason. Sonochem. 20 (1), 395–400. |
[16] | Omri, K. Najeh, I. Dhahri, R. El Ghoul, J. and Elmir, L. (2014). Microelectron. Eng. 128, 53–58. |
[17] | Zak, A.K. Abrishami, M.E. Majidi, W.H. Abd Yosefi, R. and Hosseini, S.M. (2011). Ceram. Inter. 37, 393–398. |
[18] | Wu, Y.L. and Liu, S.C. (2002). Adv. Mater. 14, 215–218. |
[19] | Wei, Y.L. and Chang, P.C. (2008). J. Phys. Chem. Solids. 69, 688–692. |
[20] | Wang, Y. Zhang, C. Bi, S. and Luo, G. (2010). Powder Technol. 202, 130–136. |
[21] | Moharram, A.H. Mansour, S.A. Hussein, M.A. and Rashad, M. (2014). J. Nanomater. 1–5. |
[22] | Gunalan, S. Sivaraj, R. and Rajendran, V. (2012). Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog. Nat. Sci. Mater. Int. 22 (6), 693–700. |
[23] | Mahanty, A. Mishra, S. Bosu, R. Maurya, U.K. Netam, S.P. Sarkar, B. (2013). Phytoextracts-synthesized silver nanoparticles inhibit bacterial fish pathogen Aeromonas hydrophila. Indian J. Microbiol. 53 (4), 438–446. |
[24] | Raveendran, P. Fu, J. and Wallen, S.L. (2003). J. Am. Chem. Soc. 125, 13940–13941. |
[25] | Smitha, S.L. Philip, D. and Gopchandran, K.G. (2009). Green synthesis of gold nanoparticles using Cinnamomum zeylanicum leaf broth. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 74(3):735-9. |
[26] | Bhainsa, K.C. and D’Souza, S.F. (2006). Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids and Surfaces B: Biointerfaces. 47(2): 160- 4. |
[27] | Ahmad, A. Mukherjee, P. Senapati, S. Mandal, D. Khan, M.I. Kumar, R., et al. (2003). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces B: Biointerfaces. 28(4):313-8. |
[28] | Sorbiun, M. Shayegan, M.E. Ramazani, A. and Taghavi, F.S. (2018). Biosynthesis of Ag, ZnO and bimetallic Ag/ZnO alloy nanoparticles by aqueous extract of oak fruit hull (Jaf) and investigation of photocatalytic activity of ZnO and bimetallic Ag/ZnO for degradation of basic violet 3 dye. J. Mater. Sci: Materials in Electronics. 29(4), 2806-14. |
[29] | Shayegan, M.E. Sorbiun, M. Ramazani, A. and Taghavi, F.S. (2018). Plant-mediated synthesis of zinc oxide and copper oxide nanoparticles by using ferulago angulata (schlecht) boiss extract and comparison of their photocatalytic degradation of Rhodamine B (RhB) under visible light irradiation. Journal of Materials Science: Materials in Electronics. 29(2):1333-40. |
[30] | Han, K.N. and Kim, N.S. (2009). Challenges and opportunities in direct write technology using nano-metal particles. KONA Powder and Particle Journal. 27:73-83. |
[31] | Vilchis-Nestor, A.R. Sánchez-Mendieta, V. Camacho-López, M.A. Gómez-Espinosa, R.M. Camacho-López, M.A. and Arenas Alatorre, J.A. (2008). Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract. Materials Letters. 62(17): 3103-5. |
[32] | Sathishkumar, M. Sneha, K. Won, S.W. Cho, C.W. Kim, S. and Yun, Y.S. (2009). Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano- crystalline silver particles and its bactericidal activity. Colloids and Surfaces B: Biointerfaces. 73(2):332-8. |
[33] | Suresh, D. Nethravathi, P.C. Udayabhanu, H. Rajanaika, H. Nagabhushana, H. and Sharma, S.C. (2015). Mat. Sci. Semicon. Proc. 31, 446–454. |
[34] | Dobrucks, R. and Dugazewska, J. (2016). Saudi J. Biol. Sci. 23(4), 517–523. |
[35] | Abdul Salam, H. Sivaraj, R. and Venckatesh, R. (2014). Mater. Lett. 131, 16–18. |
[36] | Vimala, K. Sundarraj, S. Paulpandi, M. Vengatesan, S. and Kannan, S. (2014). Process Biochem. 49, 160–172. |
[37] | Bhuyan, T. Mishra, K. Khanuja, M. Prasad, R. and Varma, A. (2015). Mat. Sci. Semicon. Proc. 32, 55–61. |
[38] | Moazzen, M.A.M. Borghei, S.M. and Taleshi, T. (2012). Change in the morphology of ZnO nanoparticles upon changing the reactant concentration. Appl Nanosci. 3, 295–302. |
[39] | Yang, K. Lin, D. and Xing, B. (2009). Langmuir, 25, 3571–3576. DOI: 10.1021/la803701b. |
[40] | Venu Gopal, V.R. and Susmita Kamila. (2017). Effect of temperature on the morphology of ZnO nanoparticles: a comparative study. Appl Nanosci, 7:75–82 |
[41] | Tripathi, R.M. Bhadwal, A.S. Gupta, R.K. Singh, P. Shrivastav, A. and Shrivastav, B.R. (2014). ZnO Nanoflowers: novel biobenic synthesis and enhanced photocatalytic activity. J. Photochem. Photobiol. B Biol. 141, 288-295. |
[42] | Dhandapani, P. Siddarth, A.S. Kamalasekaran, S. Maruthamuthu, S. and Rajagopal, G. (2014). Bio-approach:ureolytic bacteriamediated synthesis of ZnO Nanocrystals on cotton fabric and evaluation of their antibacterial properties. Carbohydr. Polym. 103, 448-455. |
[43] | Rao, M.D. and Guatam, P. (2016). Synthesis and characterization of ZnO Nanoflowers using chlamydomonas reinhardtii: a green approach. Environ. Prog. Sustain. Energy. 1-7. |
[44] | Shankar, S.S. Rai, A. Ahmad, A. and Sastry, M. (2004). Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and interface Science, 275(2): 496–502. |
[45] | Sangeetha G, Rajeshwari S, Venckatesh R. Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: Structure and optical properties. Materials Research Bulletin. 2011;46(12):2560-6. |
[46] | Jiale H, Qingbiao L, Daohua S, Yinghua L, Yuanbo S, Xin Y, et al. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology. 2007;18(10):105104. |
[47] | Sastry M, Ahmad A, Khan MI, Kumar R. Biosynthesis of metal nanoparticles using fungi and actinomycete. Current science. 2003;85(2):162-70. 115. |
[48] | Sanghi R, Verma P. Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresource Technology. 2009;100(1):501-4. |
[49] | Yung, M.M.N. Mouneyrac, C. and Leung, K.M.Y. (2014). Encyclop. Nano.1–17. |
[50] | Harding, F. Breast Cancer: Cause, Prevention and Cure. Aylesbury: Tekline Publishing; 2006:83. |
[51] | Ramin, M.-A. Aziz, H.-Y. Abolfazl, B. Saeid, L.-N. and Asadollah, A. (2018). Enhanced anti-bacterial activities of ZnO nanoparticles and ZnO/CuO nanocomposites synthesized using Vaccinium arctostaphylos L. fruit extract. Artificial cells, Nanomedicine, and Biotechnology. 46 (S1), S1200–S1209. |
[52] | Yuhong, Z. Li, F. Fuigui, H. Aiwu, W. Wen, C. Jinping, Y. Jun, Y. and Feng, P. (2015). Green biosynthesis and characterization of zinc oxide nanoparticles using Corymbia citriodora leaf extract and their photocatalytic activity”, Green Chemistry Letters and Reviews, vol. 8, no. 2, pp. 59-63. |
[53] | Huzaifa, U. Doga, K. and Nahit, R. (2019). Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines. International Journal of Nanomedicine. 14: 87– 100. |
[54] | Vinay, Sharma. (2012). Sol-Gel mediated facile synthesis of Zinc-Oxide nanoaggregates, their characterization and antibacterial activity. IOSR Journal of Applied Chemistry (IOSR- JAC) ISSN: 2278-5736. 2(6), 52-55. |
[55] | Santhoshkumar, J. Venkat, S. and Kumar, S.R. (2017). Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resource- Efficient Technologies, 3, 459-465. |
[56] | Shubhangi, M. Priyanka, R. Ashish, W. and Sanjay, M. (2014). Synthesis and comparative study of zinc oxide nanoparticles with and without capping of pectin and its application. World Journal of Pharmacy and Pharmaceutical Sciences. 3(7), 1255-1267. |
[57] | Gowsalya, V. Santhiya, E. and Kavitha, C. (2017). Synthesis, characterziation of ZnO Nanoparticles from Thespesia populnea. Indian Journal of Applied Research. 7(10), ISSN- 2249-555X, IF: 4894, IC Value: 79.96. |
[58] | Rajesh, K.S. Forishmeeta, B. and Nikahat, P. (2015). Synthesis and Characterization of ZnO Nanoparticles using Leaf Extract of Camellia sinesis and Evaluation of their Antimicrobial Efficacy. Int. J. Curr. Microbiol. App. Sci. 4(8): 444-450. |
[59] | Shabnam, F. Mina, J. and Hassan, K.F. (2019). Green synthesis of zinc oxide nanoparticles: a comparison. Green Chemistry Letters and Reviews. 12(1), 19–24. |
[60] | Talam, S. Karumuri, S.R. and Gunnam, N. (2012). ISRN Nano, 1–6. DOI: 10.5402/2012/372505. |
[61] | Zak, A.K. Razali, R. Majid, W.H. and Darroudi, M. (2011). International Journal of Nanomedicine, 6, 1399–1403, DOI: 10.2147/IJN.S19693. |
[62] | Bian, S.W. Mudunkotuwa, I.A. Rupasinghe, T. and Grassian, V.H. (2011). Langmuir, 27, 6059–6068. DOI: 10.1021/la200570n. |
[63] | Wang, Y.X. Sun, J. and Yu, X. (2011). In Mater. Sci. Forum, 663, 1103–1106. DOI:10.4028/www.scientific.net/MSF.663-665.1103. |
[64] | Lavand, A.B. and Malghe, Y.S. (2015). International Journal of Photochemistry, 305–310, DOI: 0.1016/j.jksus. |
[65] | Akhil, K. Khan, S.S. (2017). J. Photochem. Photobio. B, 167, 136–149. DOI: 10.1016/j.jphotobiol.2016.12.010. |
[66] | Zhou, L. Lie, Y. Briers, H., et al. (2018). Natural product recovery from bilberry (Vaccinium myrtillus L.) presscake via microwave hydrolysis. ACS Sustain Chem Eng. 6:3676–3685. |
[67] | Singh, R.P. Shukla, V.K Yadav, R.S Sharma, P.K. Singh, P.K. and Pandey, A.C. (2011). Advance Material Letters, 2, 313–317. |
[68] | Su Z. (2012). Anthocyanins and flavonoids of Vaccinium L. Pharm Crops. 3:7–37. |