[1] | Surmenev, R.A., M.A. Surmeneva, and A.A. Ivanova, Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis – A review. Acta Biomaterialia, 2014. 10(2): p. 557-579. |
[2] | Zhou, H. and J. Lee, Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomaterialia, 2011. 7(7): p. 2769-2781. |
[3] | Baino, F., et al., Biomaterials for orbital implants and ocular prostheses: Overview and future prospects. Acta Biomaterialia, 2014. 10(3): p. 1064-1087. |
[4] | Farkas, B., et al., Fabrication of hybrid nanocomposite scaffolds by incorporating ligand-free hydroxyapatite nanoparticles into biodegradable polymer scaffolds and release studies. Beilstein J Nanotechnol, 2015. 6: p. 2217-23. |
[5] | Cai, Y., et al., Role of hydroxyapatite nanoparticle size in bone cell proliferation. Journal of Materials Chemistry, 2007. 17(36): p. 3780-3787. |
[6] | Cai, L., A.S. Guinn, and S. Wang, Exposed hydroxyapatite particles on the surface of photo-crosslinked nanocomposites for promoting MC3T3 cell proliferation and differentiation. Acta Biomater, 2011. 7(5): p. 2185-99. |
[7] | Choi, S. and W.L. Murphy, Sustained plasmid DNA release from dissolving mineral coatings. Acta Biomater, 2010. 6(9): p. 3426-35. |
[8] | Mostaghaci, B., et al., One-Step Synthesis of Nanosized and Stable Amino-Functionalized Calcium Phosphate Particles for DNA Transfection. Chemistry of Materials, 2013. 25(18): p. 3667-3674. |
[9] | Combes, C. and C. Rey, Adsorption of proteins and calcium phosphate materials bioactivity. Biomaterials, 2002. 23(13): p. 2817-2823. |
[10] | Motskin, M., et al., Hydroxyapatite nano and microparticles: Correlation of particle properties with cytotoxicity and biostability. Biomaterials, 2009. 30(19): p. 3307-3317. |
[11] | Dong, Z., Y. Li, and Q. Zou, Degradation and biocompatibility of porous nano-hydroxyapatite/ polyurethane composite scaffold for bone tissue engineering. Applied Surface Science, 2009. 255(12): p. 6087-6091. |
[12] | Lin, K., et al., Tailoring the Nanostructured Surfaces of Hydroxyapatite Bioceramics to Promote Protein Adsorption, Osteoblast Growth, and Osteogenic Differentiation. ACS Applied Materials & Interfaces, 2013. 5(16): p. 8008-8017. |
[13] | Sadat-Shojai, M., et al., Nano-hydroxyapatite reinforced polyhydroxybutyrate composites: A comprehensive study on the structural and in vitro biological properties. Materials Science and Engineering: C, 2013. 33(5): p. 2776-2787. |
[14] | Rodio, M., et al., Facile fabrication of bioactive ultra-small protein–hydroxyapatite nanoconjugates via liquid-phase laser ablation and their enhanced osteogenic differentiation activity. Journal of Materials Chemistry B, 2017. 5(2): p. 279-288. |
[15] | Shi, Z., et al., Size effect of hydroxyapatite nanoparticles on proliferation and apoptosis of osteoblast-like cells. Acta Biomaterialia, 2009. 5(1): p. 338-345. |
[16] | Bose, S., et al., Microwave-processed nanocrystalline hydroxyapatite: Simultaneous enhancement of mechanical and biological properties. Acta Biomaterialia, 2010. 6(9): p. 3782-3790. |
[17] | Yeon, K.C., J. Wang, and S.C. Ng, Mechanochemical synthesis of nanocrystalline hydroxyapatite from CaO and CaHPO4. Biomaterials, 2001. 22(20): p. 2705-12. |
[18] | Tas, A.C., Combustion synthesis of calcium phosphate bioceramic powders. Journal of the European Ceramic Society, 2000. 20(14–15): p. 2389-2394. |
[19] | Dhand, V., K.Y. Rhee, and S.-J. Park, The facile and low temperature synthesis of nanophase hydroxyapatite crystals using wet chemistry. Materials Science and Engineering: C, 2014. 36(0): p. 152-159. |
[20] | Ma, M.G., Hierarchically nanostructured hydroxyapatite: hydrothermal synthesis, morphology control, growth mechanism, and biological activity. Int J Nanomedicine, 2012. 7: p. 1781-91. |
[21] | Bakan, F., O. Laçin, and H. Sarac, A novel low temperature sol-gel synthesis process for thermally stable nano crystalline hydroxyapatite. Powder Technology, 2013. 233: p. 295-302. |
[22] | Viswanath, B. and N. Ravishankar, Controlled synthesis of plate-shaped hydroxyapatite and implications for the morphology of the apatite phase in bone. Biomaterials, 2008. 29(36): p. 4855-63. |
[23] | Sanosh, K.P., et al., Preparation and characterization of nano-hydroxyapatite powder using sol-gel technique. Bulletin of Materials Science, 2009. 32(5): p. 465-470. |
[24] | Swain, S.K. and D. Sarkar, A comparative study: Hydroxyapatite spherical nanopowders and elongated nanorods. Ceramics International, 2011. 37(7): p. 2927-2930. |
[25] | Iafisco, M., et al., Conjugation of hydroxyapatite nanocrystals with human immunoglobulin G for nanomedical applications. Colloids and Surfaces B: Biointerfaces, 2012. 90(0): p. 1-7. |
[26] | Intartaglia, R., et al., Extensive characterization of oxide-coated colloidal gold nanoparticles synthesized by laser ablation in liquid. Materials, 2016. 9(9): p. 775. |
[27] | Kőrösi, L., et al., Ultrasmall, ligand-free Ag nanoparticles with high antibacterial activity prepared by pulsed laser ablation in liquid. Journal of Chemistry, 2016. 2016. |
[28] | García-Calzada, R., et al., Facile laser-assisted synthesis of inorganic nanoparticles covered by a carbon shell with tunable luminescence. RSC Advances, 2015. 5(62): p. 50604-50610. |
[29] | Intartaglia, R., et al., Optical Properties of Femtosecond Laser-Synthesized Silicon Nanoparticles in Deionized Water. The Journal of Physical Chemistry C, 2011. 115(12): p. 5102-5107. |
[30] | Intartaglia, R., et al., Luminescent silicon nanoparticles prepared by ultra short pulsed laser ablation in liquid for imaging applications. Opt. Mater. Express, 2012. 2(5): p. 510-518. |
[31] | Rodio, M., et al., Tailoring of size, emission and surface chemistry of germanium nanoparticles via liquid-phase picosecond laser ablation. Journal of Materials Chemistry C, 2017. 5(46): p. 12264-12271. |
[32] | Musaev, O.R., et al., Nanoparticle fabrication of hydroxyapatite by laser ablation in water. Journal of Applied Physics, 2008. 104(8): 63. |
[33] | Intartaglia, R., et al., Bioconjugated silicon quantum dots from one-step green synthesis. Nanoscale, 2012. 4(4): p. 1271-1274. |
[34] | Bagga, K., et al., Laser-assisted synthesis of Staphylococcus aureus protein-capped silicon quantum dots as bio-functional nanoprobes. Laser Physics Letters, 2013. 10(6). |
[35] | Rodio, M., et al., Direct surface modification of ligand-free silicon quantum dots prepared by femtosecond laser ablation in deionized water. J Colloid Interface Sci, 2016. 465: p. 242-8. |
[36] | Papadopoulou, E.L., et al., Nanocomposite fabrication via direct ultra-fast laser ablation of titanium in aqueous monomer solution. Laser Physics Letters, 2015. 12(12): p. 125601. |
[37] | Intartaglia, R., K. Bagga, and F. Brandi, Study on the productivity of silicon nanoparticles by picosecond laser ablation in water: towards gram per hour yield. Optics Express, 2014. 22(3): p. 3117-3127. |
[38] | Han, Y., X. Wang, and S. Li, A simple route to prepare stable hydroxyapatite nanoparticles suspension. Journal of Nanoparticle Research, 2009. 11(5): p. 1235-1240. |
[39] | Grdadolnik, J. and Y. Marechal, Bovine serum albumin observed by infrared spectrometry. II. Hydration mechanisms and interaction configurations of embedded H(2)O molecules. Biopolymers, 2001. 62(1): p. 54-67. |
[40] | Bouhekka, A. and T. Bürgi, In situ ATR-IR spectroscopy study of adsorbed protein: Visible light denaturation of bovine serum albumin on TiO2. Applied Surface Science, 2012. 261(0): p. 369-374. |