[1] | K. Bhattacharya, S.P. Mukherjee, A. Gallud, S.C. Burkert, S. Bistarelli, S. Bellucci, M. Bottini, A. Star, B. Fadeel, Biological interactions of carbon-based nanomaterials: From coronation to degradation, Nanomedicine: nanotechnology, biology, and medicine, 12 (2016) 333-351. |
[2] | J.C. Arnault, Surface Modifications of Nanodiamonds and Current Issues for Their Biomedical Application, in: N. Yang (Ed.) Novel aspects of diamonds, Springer International, Switzerland, 2015. |
[3] | C. Murphy, Two ways to make nanoparticles, in, Sustainable nano, http://sustainable-nano.com/2014/06/10/two-ways-to-make-nanoparticles/, 2014. |
[4] | Sympatec, Application field Science Et Reseach, in, SympaTEC, https://www.sympatec.com/en/applications/fields-of-application/science-research/, 2018. |
[5] | R. Bhisey, Carbon Nanotube Manufacturers Can Expect Significant Increase in Demand from Polymer Producers, reports TMR, in, The edition truth, https://0x9.me/ajfqv, 2017. |
[6] | P. Suvarnaphaet, S. Pechprasarn, Graphene-Based Materials for Biosensors: A Review, Sensors, 17 (2017). |
[7] | H.-D. Wang, Q. Yang, C.H. Niu, Functionalization of nanodiamond particles with N,O-carboxymethyl chitosan, Diamond and Related Materials, 19 (2010) 441-444. |
[8] | R. Grall, H. Girard, L. Saad, T. Petit, C. Gesset, M. Combis-Schlumberger, V. Paget, J. Delic, J.C. Arnault, S. Chevillard, Impairing the radioresistance of cancer cells by hydrogenated nanodiamonds, Biomaterials, 61 (2015) 290-298. |
[9] | S.A. Ansari, R. Satar, S.K. Zaidi, M.I. Naseer, S. Karim, M.H. Alqahtani, M. Rasool, Nanodiamonds as an effective and novel matrix for immobilizing β galactosidase, Food and Bioproducts Processing, 95 (2015) 298-303. |
[10] | M.V. Baidakova, Y.A. Kukushkina, A.A. Sitnikova, M.A. Yagovkina, D.A. Kirilenko, V.V. Sokolov, M.S. Shestakov, A.Y. Vul’, B. Zousman, O. Levinson, Structure of nanodiamonds prepared by laser synthesis, Physics of the Solid State, 55 (2013) 1747-1753. |
[11] | V.N. Mochalin, Y. Gogotsi, Nanodiamond–polymer composites, Diamond and Related Materials, 58 (2015) 161-171. |
[12] | Z. Cui, Y. Zhang, J. Zhang, H. Kong, X. Tang, L. Pan, K. Xia, A. Aldalbahi, A. Li, R. Tai, C. Fan, Y. Zhu, Sodium alginate-functionalized nanodiamonds as sustained chemotherapeutic drug-release vectors, Carbon, 97 (2016) 78-86. |
[13] | Z. Zhang, B. Niu, J. Chen, X. He, X. Bao, J. Zhu, H. Yu, Y. Li, The use of lipid-coated nanodiamond to improve bioavailability and efficacy of sorafenib in resisting metastasis of gastric cancer, Biomaterials, 35 (2014) 4565-4572. |
[14] | J. Mytych, A. Lewinska, J. Zebrowski, M. Wnuk, Nanodiamond-induced increase in ROS and RNS levels activates NF-κB and augments thiol pools in human hepatocytes, Diamond and Related Materials, 55 (2015) 95-101. |
[15] | J. Li, Y. Zhu, W. Li, X. Zhang, Y. Peng, Q. Huang, Nanodiamonds as intracellular transporters of chemotherapeutic drug, Biomaterials, 31 (2010) 8410-8418. |
[16] | H.A. Girard, P. Benayoun, C. Blin, A. Trouvé, C. Gesset, J.-C. Arnault, P. Bergonzo, Encapsulated nanodiamonds in smart microgels toward self-assembled diamond nanoarrays, Diamond and Related Materials, 33 (2013) 32-37. |
[17] | M.S. Wu, D.S. Sun, Y.C. Lin, C.L. Cheng, S.C. Hung, P.K. Chen, J.H. Yang, H.H. Chang, Nanodiamonds protect skin from ultraviolet B-induced damage in mice, J Nanobiotechnology, 13 (2015) 35. |
[18] | R.Y. Yakovlev, A.S. Solomatin, N.B. Leonidov, I.I. Kulakova, G.V. Lisichkin, Detonation diamond—A perspective carrier for drug delivery systems, Russian Journal of General Chemistry, 84 (2014) 379-390. |
[19] | M. Khan, N. Shahzad, C. Xiong, T.K. Zhao, T. Li, F. Siddique, N. Ali, M. Shahzad, H. Ullah, S.A. Rakha, Dispersion behavior and the influences of ball milling technique on functionalization of detonated nano-diamonds, Diamond and Related Materials, 61 (2016) 32-40. |
[20] | R.S. Lewis, Anders, E., Draine, B.T., Properties, detectability and origin of interstellar diamonds in meteorites, Nature, 339 (1989) 117-121. |
[21] | I. Shugalei, Voznyakovskii, A., Garabadzhiu, A., Tselinskiii, I., Sudarikov, A., Ilyushin, M., Biological Activity of Detonation Nanodiamond and Prospects in Its Medical and Biological Applications, Russian Journal of General Chemistry (2013) 5. |
[22] | V.Y. Dolmatov, Composition Materials Based on Elastomer and Polymer Matrices Filled with Nanodiamonds of Detonation Synthesis, Nanotechnologies in Russia, 4 (2009) 556-575. |
[23] | A. Speltini, D. Merli, A. Profumo, Analytical application of carbon nanotubes, fullerenes and nanodiamonds in nanomaterials-based chromatographic stationary phases: a review, Anal Chim Acta, 783 (2013) 1-16. |
[24] | V.Y. Osipov, A.E. Aleksenskiy, A.I. Shames, A.M. Panich, M.S. Shestakov, A.Y. Vul’, Infrared absorption study of surface functional groups providing chemical modification of nanodiamonds by divalent copper ion complexes, Diamond and Related Materials, 20 (2011) 1234-1238. |
[25] | X. Liu, Z. Yu, Q. Wei, G. Wen, X. Duan, X. You, Modification of polycrystalline nanodiamonds by using periodic magnetic field enhanced hydrogen plasma and the application on nanogrinding of thin film magnetic head, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 416 (2013) 9-15. |
[26] | A.V. Ukhina, D.V. Dudina, A.G. Anisimov, V.I. Mali, N.V. Bulina, I.A. Bataev, I.N. Skovorodin, B.B. Bokhonov, Porous electrically conductive materials produced by Spark Plasma Sintering and hot pressing of nanodiamonds, Ceramics International, 41 (2015) 12459-12463. |
[27] | J.B. Lewis, D. Isheim, C. Floss, D.N. Seidman, C12/C13-ratio determination in nanodiamonds by atom-probe tomography, Ultramicroscopy, 159 Pt 2 (2015) 248-254. |
[28] | E.P. Koumoulos, P. Jagadale, A. Lorenzi, A. Tagliaferro, C.A. Charitidis, Evaluation of surface properties of epoxy–nanodiamonds composites, Composites Part B: Engineering, 80 (2015) 27-36. |
[29] | A. Wallner, K. Melber, S. Merchel, U. Ott, O. Forstner, R. Golser, W. Kutschera, A. Priller, P. Steier, Stable platinum isotope measurements in presolar nanodiamonds by TEAMS, Nucl Instrum Methods Phys Res B, 294 (2013) 496-502. |
[30] | E. Yılmaz, M. Soylak, Preparation and characterization of magnetic carboxylated nanodiamonds for vortex-assisted magnetic solid-phase extraction of ziram in food and water samples, Talanta, 158 (2016) 152-158. |
[31] | R.Y. Yakovlev, N.N. Dogadkin, I.I. Kulakova, G.V. Lisichkin, N.B. Leonidov, V.P. Kolotov, Determination of impurities in detonation nanodiamonds by gamma activation analysis method, Diamond and Related Materials, 55 (2015) 77-86. |
[32] | M.P. Petrov, V.N. Shilov, A.A. Trusov, A.V. Voitylov, V.V. Vojtylov, Electro-optic research of polarizability dispersion in aqueous polydisperse suspensions of nanodiamonds, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 506 (2016) 40-49. |
[33] | D.S. Sabirov, E. Ōsawa, Dipole polarizability of nanodiamonds and related structures, Diamond and Related Materials, 55 (2015) 64-69. |
[34] | S.K. Gordeev, S.B. Korchagina, On the stability of small-sized nanodiamonds, Journal of Superhard Materials, 29 (2007) 124-125. |
[35] | J. Karpeta-Kaczmarek, M. Augustyniak, M. Rost-Roszkowska, Ultrastructure of the gut epithelium in Acheta domesticus after long-term exposure to nanodiamonds supplied with food, Arthropod Structure & Development, 45 (2016) 253-264. |
[36] | Y. Astuti, N.R.J. Poolton, Y.V. Butenko, L. Šiller, Evaporation and alignment of 1-undecene functionalised nanodiamonds, Journal of Luminescence, 156 (2014) 41-48. |
[37] | J. Say, Vreden, C., Reilly, D., Brown, L., Rabeau, J., King, N., Luminescent nanodiamonds for biomedical applications, Biophys Rev, 3 (2011) 171-184. |
[38] | J. Stursa, J. Havlik, V. Petrakova, M. Gulka, J. Ralis, V. Zach, Z. Pulec, V. Stepan, S.A. Zargaleh, M. Ledvina, M. Nesladek, F. Treussart, P. Cigler, Mass production of fluorescent nanodiamonds with a narrow emission intensity distribution, Carbon, 96 (2016) 812-818. |
[39] | L. Cao, Y. Hou, K. Lafdi, K. Urmey, Fluorescent composite scaffolds made of nanodiamonds/polycaprolactone, Chemical Physics Letters, 641 (2015) 123-128. |
[40] | H.-D. Wang, Q. Yang, C.H. Niu, Preparation of films of nanodiamonds by step-by-step deposition approach through hydrogen bonding, Diamond and Related Materials, 25 (2012) 73-79. |
[41] | J. Neburkova, J. Vavra, P. Cigler, Coating nanodiamonds with biocompatible shells for applications in biology and medicine, Current Opinion in Solid State and Materials Science. |
[42] | D.S. Volkov, M.A. Proskurnin, M.V. Korobov, Survey study of mercury determination in detonation nanodiamonds by pyrolysis flameless atomic absorption spectroscopy, Diamond and Related Materials, 50 (2014) 60-65. |
[43] | A.R. Kirmani, W. Peng, R. Mahfouz, A. Amassian, Y. Losovyj, H. Idriss, K. Katsiev, On the relation between chemical composition and optical properties of detonation nanodiamonds, Carbon, 94 (2015) 79-84. |
[44] | F. Ahmed, Memic, A., Nanodiamonds for tracking of leukemic cells, BioMed Central, 15 (2014) P54. |
[45] | J. Bertrand, Pioche-Durieu, C., Ayala, J., Petit, T., Girard, H., Malvy, C., Le Cam, E., Treussart, F., Arnault, J., Plasma hydrogenated cationic detonation nanodiamonds efficiently deliver to human cells in culture functional siRNA targeting the Ewing sarcoma junction oncogene, Biomaterials, 45 (2015) 93-98. |
[46] | W. Ma, X. Yu, X. Qu, Q. Zhang, Functionalization of agglomerating nanodiamonds with biodegradable poly(ε-caprolactone) through surface-initiated polymerization, Diamond and Related Materials, 62 (2016) 14-21. |
[47] | T. Subhani, M. Latif, I. Ahmad, S.A. Rakha, N. Ali, A.A. Khurram, Mechanical performance of epoxy matrix hybrid nanocomposites containing carbon nanotubes and nanodiamonds, Materials & Design, 87 (2015) 436-444. |
[48] | J. Xiao, X. Duan, Q. Yin, Z. Zhang, H. Yu, Y. Li, Nanodiamonds-mediated doxorubicin nuclear delivery to inhibit lung metastasis of breast cancer, Biomaterials, 34 (2013) 9648-9656. |
[49] | A. Kovalenko, S. Záliš, P. Ashcheulov, I. Kraus, J. Pavluch, I. Kratochvílová, Theoretical study of chromium and nickel-related luminescence centers in molecular-sized nanodiamonds, Diamond and Related Materials, 58 (2015) 122-128. |
[50] | I.I. Kulakova, Surface Chemistry of Nanodiamonds, Physics of the Solid State, 46 (2004) 636-643. |
[51] | J.C. Arnault, H.A. Girard, Hydrogenated nanodiamonds: Synthesis and surface properties, Current Opinion in Solid State and Materials Science. |
[52] | J. Salava, F. Trojánek, Š. Stehlík, M. Varga, B. Rezek, P. Malý, Influence of air annealing on the luminescence dynamics of HPHT nanodiamonds, Diamond and Related Materials, 68 (2016) 62-65. |
[53] | S. Stehlik, L. Ondic, A.M. Berhane, I. Aharonovich, H.A. Girard, J.-C. Arnault, B. Rezek, Photoluminescence of nanodiamonds influenced by charge transfer from silicon and metal substrates, Diamond and Related Materials, 63 (2016) 91-96. |
[54] | N. Sergeev, Panich, A., Olszewski, M., Shenderova, O., Goren, S., , 13C spin-lattice relaxation in nanodiamonds in static and magic angle spinning regimes, Solid State Nucl Magn Reson, 66-67 (2015) 51-55. |
[55] | I.I. Obraztsova, N.K. Eremenko, Physicochemical modification of nanodiamonds, Russian Journal of Applied Chemistry, 81 (2008) 603-608. |
[56] | D.G. Lim, R.E. Prim, K.H. Kim, E. Kang, K. Park, S.H. Jeong, Combinatorial nanodiamond in pharmaceutical and biomedical applications, International journal of pharmaceutics, 514 (2016) 41-51. |
[57] | H.D. Espinosa, Peng, B., Prorok, B.C., Moldovan, N., Auciello, O., Carlisle, J.A., Gruen, D.M., Mancini, D.C., Fracture strength of ultrananocrystalline diamond thin films—identification of Weibull parameters, Journal of Applied Physics, 94 (2003). |
[58] | A.M. Valenkov, I.V. Gofman, K.S. Nosov, V.M. Shapovalov, V.E. Yudin, Polymeric composite systems modified with allotropic forms of carbon (review), Russian Journal of Applied Chemistry, 84 (2011) 735-750. |
[59] | E. Peltola, N. Wester, K.B. Holt, L.-S. Johansson, J. Koskinen, V. Myllymäki, T. Laurila, Nanodiamonds on tetrahedral amorphous carbon significantly enhance dopamine detection and cell viability, Biosensors and Bioelectronics. |
[60] | V.Y. Dolmatov, G.S. Yur’ev, V. Myllymäki, K.M. Korolev, Why detonation nanodiamonds are small, Journal of Superhard Materials, 35 (2013) 77-82. |
[61] | A.M. Panich, A.I. Shames, B. Zousman, O. Levinson, Magnetic resonance study of nanodiamonds prepared by laser-assisted technique, Diamond and Related Materials, 23 (2012) 150-153. |
[62] | A.V. Stanishevsky, M.J. Walock, S.A. Catledge, Surface modification and stability of detonation nanodiamonds in microwave gas discharge plasma, Applied Surface Science, 357 (2015) 1403-1409. |
[63] | E. Roumeli, A. Markoulis, K. Chrissafis, A. Avgeropoulos, D. Bikiaris, Substantial enhancement of PP random copolymer's thermal stability due to the addition of MWCNTs and nanodiamonds: Decomposition kinetics and mechanism study, Journal of Analytical and Applied Pyrolysis, 106 (2014) 71-80. |
[64] | D.F. Johnson, W.D. Mattson, Theoretical investigations of surface reconstruction on C nanodiamonds and cubic-BN nanoparticles, Diamond and Related Materials, 58 (2015) 155-160. |
[65] | R. Yakovlev, Solomatin. A., Leonidov, B., Kulakova, I., Lisichkin, G., Detonation Diamond—A Perspective Carrier for Drug Delivery Systems, Russian Journal of General Chemistry, 84 (2012) 379-390. |
[66] | V.Y. Dolmatov, Polymer–Diamond Composites Based on Detonation Nanodiamonds. Part 1, Journal of Superhard Materials, 29 (2006) 1-11. |
[67] | S. Stehlik, Glatzel, T., Pichot, V., Pawlak, R., Meyer, E., Spitzer, D., Rezek, B., Water interaction with hydrogenated and oxidized detonation nanodiamonds — Microscopic and spectroscopic analyses, Diamond and Related Materials, 63 (2016) 97-102. |
[68] | M.G. Chernysheva, I.Y. Myasnikov, G.A. Badun, Myramistin adsorption on detonation nanodiamonds in the development of drug delivery platforms, Diamond and Related Materials, 55 (2015) 45-51. |
[69] | X. Luo, H. Zhang, Z. Cao, N. Cai, Y. Xue, F. Yu, A simple route to develop transparent doxorubicin-loaded nanodiamonds/cellulose nanocomposite membranes as potential wound dressings, Carbohydrate Polymers, 143 (2016) 231-238. |
[70] | Y.Y. Hui, W.W.-W. Hsiao, S. Haziza, M. Simonneau, F. Treussart, H.-C. Chang, Single particle tracking of fluorescent nanodiamonds in cells and organisms, Current Opinion in Solid State and Materials Science, (2016). |
[71] | I.N. Remediakis, G. Kopidakis, P.C. Kelires, Softening of ultra-nanocrystalline diamond at low grain sizes, Acta Materialia, 56 (2008) 5340-5344. |
[72] | J.-P. Boudou, J. Tisler, R. Reuter, A. Thorel, P.A. Curmi, F. Jelezko, J. Wrachtrup, Fluorescent nanodiamonds derived from HPHT with a size of less than 10nm, Diamond and Related Materials, 37 (2013) 80-86. |
[73] | M.-F. Weng, S.-Y. Chiang, N.-S. Wang, H. Niu, Fluorescent nanodiamonds for specifically targeted bioimaging: Application to the interaction of transferrin with transferrin receptor, Diamond and Related Materials, 18 (2009) 587-591. |
[74] | L. Minati, C.L. Cheng, Y.C. Lin, J. Hees, G. Lewes-Malandrakis, C.E. Nebel, F. Benetti, C. Migliaresi, G. Speranza, Synthesis of novel nanodiamonds–gold core shell nanoparticles, Diamond and Related Materials, 53 (2015) 23-28. |
[75] | A. Gismondi, Reina, G., Orlanducci, S., Mizzoni, F., Gay, S., Terranova,, M., Canini, A., Nanodiamonds coupled with plant bioactive metabolites: A nanotech approach for cancer therapy, Biomaterials, 38 (2015) 22-35. |
[76] | I. Rehor, J. Slegerova, J. Kucka, V. Proks, V. Petrakova, M.P. Adam, F. Treussart, S. Turner, S. Bals, P. Sacha, M. Ledvina, A.M. Wen, N.F. Steinmetz, P. Cigler, Fluorescent nanodiamonds embedded in biocompatible translucent shells, Small, 10 (2014) 1106-1115. |
[77] | S. Sotoma, Y. Yoshinari, R. Igarashi, A. Yamazaki, S.H. Yoshimura, H. Tochio, M. Shirakawa, Y. Harada, Effective production of fluorescent nanodiamonds containing negatively-charged nitrogen-vacancy centers by ion irradiation, Diamond and Related Materials, 49 (2014) 33-38. |
[78] | M.-F. Weng, B.-J. Chang, S.-Y. Chiang, N.-S. Wang, H. Niu, Cellular uptake and phototoxicity of surface-modified fluorescent nanodiamonds, Diamond and Related Materials, 22 (2012) 96-104. |
[79] | C. Desai, S. Mitra, Microwave induced carboxylation of nanodiamonds, Diamond and Related Materials, 34 (2013) 65-69. |
[80] | P.H. Chung, E. Perevedentseva, J.S. Tu, C.C. Chang, C.L. Cheng, Spectroscopic study of bio-functionalized nanodiamonds, Diamond and Related Materials, 15 (2006) 622-625. |
[81] | H.A. Girard, J.C. Arnault, S. Perruchas, S. Saada, T. Gacoin, J.P. Boilot, P. Bergonzo, Hydrogenation of nanodiamonds using MPCVD: A new route toward organic functionalization, Diamond and Related Materials, 19 (2010) 1117-1123. |
[82] | <garcia-piña163.pdf>. |
[83] | V. Bondar, Pozdnyakova, I., Puzyr, A., Applications of Nanodiamonds for Separation and Purification of Proteins, Applications of nanodiamonds, 46 (2004) 737-739. |
[84] | S. Huang, J. Shao, L. Gao, Y. Qi, L. Ye, Adsorption of Cathepsin B-sensitive peptide conjugated DOX on nanodiamonds, Applied Surface Science, 257 (2011) 8617-8622. |
[85] | H. Ba, Y. Liu, X. Mu, W.-H. Doh, J.-M. Nhut, P. Granger, C. Pham-Huu, Macroscopic nanodiamonds/β-SiC composite as metal-free catalysts for steam-free dehydrogenation of ethylbenzene to styrene, Applied Catalysis A: General, 499 (2015) 217-226. |
[86] | Y. Liu, Sun, K., Protein Functionalized Nanodiamond Arrays, Nanoscale Res Lett, 5 (2010) 1045-1050. |
[87] | V. Pichot, K. Bonnot, N. Piazzon, M. Schaefer, M. Comet, D. Spitzer, Deposition of detonation nanodiamonds by Langmuir–Blodgett technique, Diamond and Related Materials, 19 (2010) 479-483. |
[88] | N. Attia, Rao, J., Geckeler, K., Nanodiamond–polymer nanoparticle composites and their thin films, J Nanopart Res, 16 (2014) 1-12. |
[89] | V. Bondar, Puzyr, A., Nanodiamonds for biological investigations, Applications of nanodiamonds, 46 (2004) 716-719. |
[90] | A. Pentecost, Gour, S., Mochalin, V., Knoke, I., Gogotsu, Y., Deaggregation of Nanodiamond Powders Using Salt- and Sugar-Assisted Milling, ACS Appl. Mater. Interfaces, 2 (2010) 3289-3294. |
[91] | S.R. Hemelaar, A. Nagl, F. Bigot, M.M. Rodriguez-Garcia, M.P. de Vries, M. Chipaux, R. Schirhagl, The interaction of fluorescent nanodiamond probes with cellular media, Mikrochim Acta, 184 (2017) 1001-1009. |
[92] | O.A. Mogil’naya, V.S. Bondar, Comparative study of antibacterial properties of Lysozyme upon its adsorption and covalent binding to nanodiamonds, Nanotechnologies in Russia, 7 (2012) 658-665. |
[93] | R.A. Shimkunas, E. Robinson, R. Lam, S. Lu, X. Xu, X.Q. Zhang, H. Huang, E. Osawa, D. Ho, Nanodiamond-insulin complexes as pH-dependent protein delivery vehicles, Biomaterials, 30 (2009) 5720-5728. |
[94] | H. Hashemi-Moghaddam, S. Zavareh, S. Kazemi, M. Jamili, Evaluation of magnetic nanoparticles coated by 5-fluorouracil imprinted polymer for controlled drug delivery in mouse breast cancer model, International journal of pharmaceutics, (2015). |
[95] | M. Singh, M. Holzinger, O. Biloivan, S. Cosnier, 3D-nanostructured scaffold electrodes based on single-walled carbon nanotubes and nanodiamonds for high performance biosensors, Carbon, 61 (2013) 349-356. |
[96] | J. Mytych, M. Wnuk, S.I.S. Rattan, Low doses of nanodiamonds and silica nanoparticles have beneficial hormetic effects in normal human skin fibroblasts in culture, Chemosphere, 148 (2016) 307-315. |
[97] | A. Nouailhat, An Introduction to Nanoscience and Nanotechnology, Wiley, Hoboken, United States, 2008. |
[98] | W. Hou, T.B. Toh, L.N. Abdullah, T.W.Z. Yvonne, K.J. Lee, I. Guenther, E.K.-H. Chow, Nanodiamond–Manganese dual mode MRI contrast agents for enhanced liver tumor detection, Nanomedicine: Nanotechnology, Biology and Medicine, 13 (2017) 783-793. |
[99] | J. Chen, M. Liu, Q. Huang, L. Huang, H. Huang, F. Deng, Y. Wen, J. Tian, X. Zhang, Y. Wei, Facile preparation of fluorescent nanodiamond-based polymer composites through a metal-free photo-initiated RAFT process and their cellular imaging, Chemical Engineering Journal, 337 (2018) 82-90. |
[100] | G. Balasubramanian, A. Lazariev, S.R. Arumugam, D.-w. Duan, Nitrogen-Vacancy color center in diamond—emerging nanoscale applications in bioimaging and biosensing, Current Opinion in Chemical Biology, 20 (2014) 69-77. |
[101] | Y. Fu, N. An, S. Zheng, A. Liang, Y. Li, BmK CT-conjugated fluorescence nanodiamond as potential glioma-targeted imaging and drug, Diamond and Related Materials, 21 (2012) 73-76. |
[102] | S. Najeeb, Z. Khurshid, A.S. Agwan, M.S. Zafar, M. Alrahabi, S.B. Qasim, F. Sefat, Dental Applications of Nanodiamonds, Science of Advanced Materials, 8 (2016) 2064-2070. |
[103] | D.-K. Lee, S.V. Kim, A.N. Limansubroto, A. Yen, A. Soundia, C.-Y. Wang, W. Shi, C. Hong, S. Tetradis, Y. Kim, N.-H. Park, M.K. Kang, D. Ho, Nanodiamond–Gutta Percha Composite Biomaterials for Root Canal Therapy, ACS Nano, 9 (2015) 11490-11501. |
[104] | M. Horie, L.K. Komaba, H. Kato, A. Nakamura, K. Yamamoto, S. Endoh, K. Fujita, S. Kinugasa, K. Mizuno, Y. Hagihara, Y. Yoshida, H. Iwahashi, Evaluation of cellular influences induced by stable nanodiamond dispersion; the cellular influences of nanodiamond are small, Diamond and Related Materials, 24 (2012) 15-24. |
[105] | M. Mansoorianfar, M.A. Shokrgozar, M. Mehrjoo, E. Tamjid, A. Simchi, Nanodiamonds for surface engineering of orthopedic implants: Enhanced biocompatibility in human osteosarcoma cell culture, Diamond and Related Materials, 40 (2013) 107-114. |
[106] | Q. Zhang, Mochalin, V., Netizel, I., Knoke, I., Han, J., Lug, C., Zhou, J., Lelkes, P., Gogotsi, Y., Fluorescent PLLA-nanodiamond composites for bone tissue engineering, Biomaterials, 32 (2011) 87-94. |
[107] | J. Nunes-Pereira, A.R. Silva, C. Ribeiro, S.A.C. Carabineiro, J.G. Buijnsters, S. Lanceros-Méndez, Nanodiamonds/poly(vinylidene fluoride) composites for tissue engineering applications, Composites Part B: Engineering, 111 (2017) 37-44. |
[108] | T.-K. Ryu, R.-H. Kang, K.-Y. Jeong, D.-R. Jun, J.-M. Koh, D. Kim, S.K. Bae, S.-W. Choi, Bone-targeted delivery of nanodiamond-based drug carriers conjugated with alendronate for potential osteoporosis treatment, Journal of Controlled Release, 232 (2016) 152-160. |
[109] | K. Fox, P.A. Tran, D.W.M. Lau, T. Ohshima, A.D. Greentree, B.C. Gibson, Nanodiamond-polycaprolactone composite: A new material for tissue engineering with sub-dermal imaging capabilities, Materials Letters, 185 (2016) 185-188. |
[110] | N. Cai, Q. Dai, Z. Wang, X. Luo, Y. Xue, F. Yu, Preparation and properties of nanodiamond/poly(lactic acid) composite nanofiber scaffolds, Fibers and Polymers, 15 (2015) 2544-2552. |
[111] | K. Vega-Figueroa, J. Santillán, C. García, J.A. González-Feliciano, S.A. Bello, Y.G. Rodríguez, E. Ortiz-Quiles, E. Nicolau, Assessing the Suitability of Cellulose-Nanodiamond Composite As a Multifunctional Biointerface Material for Bone Tissue Regeneration, ACS Biomaterials Science & Engineering, 3 (2017) 960-968. |
[112] | H. Banu, D.K. Sethi, A. Edgar, A. Sheriff, N. Rayees, N. Renuka, S.M. Faheem, K. Premkumar, G. Vasanthakumar, Doxorubicin loaded polymeric gold nanoparticles targeted to human folate receptor upon laser photothermal therapy potentiates chemotherapy in breast cancer cell lines, Journal of photochemistry and photobiology. B, Biology, 149 (2015) 116-128. |
[113] | A.V. Baron, N.V. Osipov, I.A. Olkhovskiy, A.P. Puzyr, V.S. Bondar, Binding the immunoglobulins of human serum by nanodiamonds, Dokl Biochem Biophys, 457 (2014) 158-159. |
[114] | A.V. Baron, Puzyr, A.P., Baron, I.I., Bondar, V.S., Effects of modified detonation nanodiamonds on the biochemical composition of human blood, Nanotechnologies in Russia, 154 (2013) 781-784. |
[115] | Z. Wang, Z. Tian, Y. Dong, L. Li, L. Tian, Y. Li, B. Yang, Nanodiamond-conjugated transferrin as chemotherapeutic drug delivery, Diamond and Related Materials, 58 (2015) 84-93. |
[116] | H. Huang, M. Liu, R. Jiang, J. Chen, L. Mao, Y. Wen, J. Tian, N. Zhou, X. Zhang, Y. Wei, Facile modification of nanodiamonds with hyperbranched polymers based on supramolecular chemistry and their potential for drug delivery, Journal of colloid and interface science, 513 (2017) 198-204. |
[117] | V.N. Khabashesku, J.L. Margrave, E.V. Barrera, Functionalized carbon nanotubes and nanodiamonds for engineering and biomedical applications, Diamond and Related Materials, 14 (2005) 859-866. |
[118] | Y. Yuan, Y. Chen, J.-H. Liu, H. Wang, Y. Liu, Biodistribution and fate of nanodiamonds in vivo, Diamond and Related Materials, 18 (2009) 95-100. |
[119] | J. Beranova, Seydlova, G., Kozak, H., Benada, O., Fisher, R., Artemenko, A., Konopasek, I., Kromka, A. , Sensitivity of bacteria to diamond nanoparticles of various size differs in gram-positive and gram-negative cells, FEMS Microbiol Lett, 351 (2014) 179-186. |
[120] | H. Kozak, A. Artemenko, J. Čermák, V. Švrček, A. Kromka, B. Rezek, Oxidation and reduction of nanodiamond particles in colloidal solutions by laser irradiation or radio-frequency plasma treatment, Vibrational Spectroscopy, 83 (2016) 108-114. |
[121] | P. Villalba, M.K. Ram, H. Gomez, V. Bhethanabotla, M.N. Helms, A. Kumar, A. Kumar, Cellular and in vitro toxicity of nanodiamond-polyaniline composites in mammalian and bacterial cell, Materials Science and Engineering: C, 32 (2012) 594-598. |
[122] | B. Cheng, H. Pan, D. Liu, D. Li, J. Li, S. Yu, G. Tan, W. Pan, Functionalization of nanodiamond with vitamin E TPGS to facilitate oral absorption of curcumin, International journal of pharmaceutics, 540 (2018) 162-170. |
[123] | K.-C. Chang, C.-Y. Chung, C.-H. Yeh, K.-H. Hsu, Y.-C. Chin, S.-S. Huang, B.-R. Liu, H.-A. Chen, A. Hu, P.-C. Soo, W.-P. Peng, Direct detection of carbapenemase-associated proteins of Acinetobacter baumannii using nanodiamonds coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, Journal of microbiological methods, 147 (2018) 36-42. |
[124] | Y.-q. Li, X.-p. Zhou, Transferrin-coupled fluorescence nanodiamonds as targeting intracellular transporters: An investigation of the uptake mechanism, Diamond and Related Materials, 19 (2010) 1163-1167. |
[125] | J.-M. Swiecicki, J. Tailhades, E. Lepeltier, G. Chassaing, S. Lavielle, C. Mansuy, Peptide-coated nanoparticles: Adsorption and desorption studies of cationic peptides on nanodiamonds, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 431 (2013) 73-79. |
[126] | L. Liu, C. Song, Z. Zhang, J. Yang, L. Zhou, X. Zhang, G. Xie, Ultrasensitive electrochemical detection of microRNA-21 combining layered nanostructure of oxidized single-walled carbon nanotubes and nanodiamonds by hybridization chain reaction, Biosensors and Bioelectronics, 70 (2015) 351-357. |
[127] | K. Purtov, Petunin, A., Burov, A., Puzyr, A., Bondar, V., Nanodiamonds as Carriers for Address Delivery of Biologically Active Substances, Nanoscale Res Lett, 5 (2010) 631-636. |
[128] | X. Zhang, J. Yin, C. Kang, J. Li, Y. Zhu, W. Li, Q. Huang, Z. Zhu, Biodistribution and toxicity of nanodiamonds in mice after intratracheal instillation, Toxicol Lett, 198 (2010) 237-243. |