[1] | G. E. Moore, “Cramming more components onto integrated circuits, Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff.,” IEEE Solid-State Circuits Society Newsletter, vol. 11, no. 5, pp. 33–35, Sep. 2006. |
[2] | C. S. Lent, P. D. Tougaw, W. Porod, and G. H. Bernstein, “Quantum cellular automata,” Nanotechnology, vol. 4, no. 1, p. 49, 1993. |
[3] | P. D. Tougaw and C. S. Lent, “Logical devices implemented using quantum cellular automata,” Journal of Applied Physics, vol. 75, no. 3, pp. 1818–1825, Feb. 1994. |
[4] | M. Abdullah-Al-Shafi and A. N. Bahar, “QCA: An Effective Approach to Implement Logic Circuit in Nanoscale,” 5th International Conference on Informatics, Electronics & Vision (ICIEV), International Conference on, IEEE, 13-14 May 2016. |
[5] | M. Abdullah-Al-Shafi, “Analysis of Fredkin Logic Circuit in Nanotechnology: An Efficient Approach,” International Journal of Hybrid Information Technology, vol. 9, no. 2, pp. 371–380. |
[6] | A. N. Bahar, S. Waheed, M. A. Uddin, and M. A. Habib, “Double Feynman Gate (F2G) in Quantum- dot Cellular Automata (QCA),” International Journal of Computer Science Engineering, vol. 2, no. 6, pp. 351–355. |
[7] | A. Sarker, A. N. Bahar, P. K. Biswas, and M. Morshed, “A novel presentation of peres gate (PG) in quantum-dot cellular automata (QCA),” European Scientific Journal, vol. 10, no. 21, pp. 101–106, 2014. |
[8] | Rahman, M. A. Habib, A. N. Bahar, Z. Rahman, and Anisur, “Novel Design of BCD to Excess-3 Code Converter in Quantum Dots Cellular Automata (QCA),” Global Journal of Research In Engineering, vol. 14, no. 4, Jun. 2014. |
[9] | A. N. Bahar, S. Waheed, and M. A. Habib, “An Efficient Layout Design of Fredkin Gate in Quantum-dot Cellular Automata (QCA),” Düzce Üniversitesi Bilim ve Teknoloji Dergisi, vol. 3, no. 1, pp. 219–225, 2015. |
[10] | S. Islam, S. Farzana, and S. A. N. Bahar, “Area efficient layout design of Multiply Complements Logic (MCL) gate using QCA Technology,” Global Journal of Research In Engineering, vol. 14, no. 4, 2014. |
[11] | A. N. Bahar, S. Waheed, and N. Hossain, “A new approach of presenting reversible logic gate in nanoscale,” SpringerPlus, vol. 4, no. 1, Dec. 2015. |
[12] | S. Islam, M. A. Shafi and A. N. Bahar, “Implementation of Binary to Gray Code Converters in Quantum Dot Cellular Automata,” Journal of Today’s Ideas – Tomorrow’s Technologies, vol. 3, no. 2, pp. 145-160, 2015. |
[13] | A. A. Shafi, A. N. Bahar, and M. S. Islam, “A Quantitative Approach of Reversible Logic Gates in QCA,” Journal of Communications Technology, Electronics and Computer Science, vol. 3, no. 0, pp. 22–26, Dec. 2015. |
[14] | A. Al-Shafi and A. N. Bahar, “Novel Binary to Gray Code Converters in QCA with Power Dissipation Analysis,” International Journal of Multimedia and Ubiquitous Engineering, vol. 11, no. 8, pp. 379–396, Aug. 2016. |
[15] | M. S. Islam, M. Abdullah-Al-Shafi, and A. N. Bahar, “A New Approach of Presenting Universal Reversible Gate in Nanoscale,” International Journal of Computer Applications, vol. 134, no. 7, pp. 1–4, 2016. |
[16] | Pudi, Vikramkumar, and K. Sridharan. "Efficient design of a hybrid adder in quantum-dot cellular automata." IEEE transactions on very large scale integration (VLSI) systems 19, no. 9 (2011): 1535-1548. doi: 10.1109/TVLSI.2010.2054120. |
[17] | A. N. Bahar and S. Waheed, “Design and implementation of an efficient single layer five input majority voter gate in quantum-dot cellular automata,” SpringerPlus, vol. 5, no. 1, Dec. 2016. |
[18] | M. Abdullah-Al-Shafi and A. N. Bahar, “Optimized design and performance analysis of novel comparator and full adder in nanoscale,” Cogent Engineering, vol. 3, no. 1, Sep. 2016. |
[19] | P. Biswas, N. Gupta, N. Patidar, “Basic Reversible Logic Gates and It’s QCA Implementation”, International Journal of Engineering Research and Applications, vol. 4, no. 6, pp. 12-16, 2014. |
[20] | J. C. Das and D. De, “Reversible Binary to Grey and Grey to Binary Code Converter using QCA,” IETE Journal of Research, vol. 61, no. 3, pp. 223–229, May 2015. |
[21] | M. Abdullah-Al-Shafi, M. Shifatul, and A. N. Bahar, “A Review on Reversible Logic Gates and its QCA Implementation,” International Journal of Computer Applications, vol. 128, no. 2, pp. 27–34, Oct. 2015. |
[22] | J. C. Das and D. De, “Quantum-dot cellular automata based reversible low power parity generator and parity checker design for nanocommunication,” Frontiers Inf Technol Electronic Eng, vol. 17, no. 3, pp. 224–236, Mar. 2016. |
[23] | A. N. Bahar, S. Waheed, and M. A. Habib, “A novel presentation of reversible logic gate in Quantum-dot Cellular Automata (QCA),” in 2014 International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), 2014, pp. 1–6. |
[24] | M. Rolih, “Analysis of possible logical reversible gate realization in ternary quantum-dot cellular automata,” engd, Univerza v Ljubljani, 2013. |
[25] | A. N. Bahar, M. A. Habib, and N. K. Biswas, “A Novel Presentation of Toffoli Gate in Quantum-dot Cellular Automata (QCA),” International Journal of Computer Applications, vol. 82, no. 10, pp. 1–4, Nov. 2013. |
[26] | B. Cvetkovska, I. Kostadinovska, and J. Danek, “Implementing the Toffoli gate in Quantum-dot Cellular Automata”, Seminar project at University of Ljubljana in the winter semester of the academic, (2013) 1-12. |
[27] | A. N. Bahar, S. Waheed, N. Hossain, and M. Asaduzzaman, “A novel 3-input XOR function implementation in quantum-dot cellular automata with energy dissipation analysis,” Alexandria Engineering Journal, vol. 56, 2017. |
[28] | A. N. Bahar, M. S. Uddin, M. Abdullah-Al-Shafi, M. M. R. Bhuiyan, and K. Ahmed, “Designing efficient QCA even parity generator circuits with power dissipation analysis,” Alexandria Engineering Journal. |
[29] | A. N. Bahar, K. Roy, M. Asaduzzaman, and M. M. R. Bhuiyan, “Design and Implementation of 1-bit Comparator in Quantum-dot Cellular Automata (QCA),” Cumhuriyet Science Journal, vol. 38, no. 1, pp. 146–152, 2017. |
[30] | K. Walus, T. J. Dysart, G. A. Jullien, and R. A. Budiman, “QCADesigner: a rapid design and Simulation tool for quantum-dot cellular automata,” IEEE Transactions on Nanotechnology, vol. 3, no. 1, pp. 26–31, Mar. 2004. |
[31] | S. Srivastava, S. Sarkar, and S. Bhanja, “Estimation of Upper Bound of Power Dissipation in QCA Circuits,” IEEE Transactions on Nanotechnology, vol. 8, no. 1, pp. 116–127, Jan. 2009. |
[32] | M. Abdullah-Al-Shafi, A. N. Bahar, P. Z. Ahmad, F. Ahmad, M. M. R. Bhuiyan, and K. Ahmed, “Power analysis dataset for QCA based multiplexer circuits,” Data in Brief, vol. 11, pp. 593–596, Apr. 2017. |
[33] | A. N. Bahar, M. M. Rahman, N. M. Nahid, and M. K. Hassan, “Energy dissipation dataset for reversible logic gates in quantum dot-cellular automata,” Data in Brief, vol. 10, pp. 557–560, Feb. 2017. |
[34] | S. Srivastava, A. Asthana, S. Bhanja, and S. Sarkar, “QCAPro - An error-power estimation tool for QCA circuit design,” in 2011 IEEE International Symposium of Circuits and Systems (ISCAS), 2011, pp. 2377–2380. |