[1] | Park Y., Hong Y.N., Weyers, A., Kim Y.S. and Linhardt R. J. 2011. Polysaccharides and Phytochemicals: a. Natural Reservoir for the Green Synthesis of Gold and Silver Nanoparticles. IET.Nanobiotechnology, 5 (3) 69-78. |
[2] | Schmid G. 1992. Large clusters and colloids. Metals in the embryonic state. |
[3] | Palani V. R., Ayyasamya P.M., Kathiravanb R., Subashnic B. 2015. Rapid decolorization of synthetic melanoidin by bacterial extract and their mediated silver nanoparticles as support. Journal of Applied Biology & Biotechnology, 3 (02), pp. 006-011. |
[4] | Kalimuthu K., Babu R.S., D. Venkataraman, D., Mohd B. and Gurunathan S. 2009. Studies on silver nanoparticles synthesized by a marine fungus, Penicilliumfellutanum isolated from coastal mangrove sediment. Colloids and Surfaces B: Biointerfaces, 71 (1): 133-137. |
[5] | Raut R., Lakkakula J.R., Kolekar N., Mendhulkar V.D. and Kashid S. B. 2010. Extracellular synthesis of silver nanoparticles using dried leaves of Pongamiapinnata (L) pierre.Nano-Micro Letters, 2 (2), pp 106-113. |
[6] | Rittner M.N. and Abraham T. 1998. Nanostructed materials: an overview and commericial analysis. Journal of the Minerals, Metals, and Materials Society 50: 37–38. |
[7] | Monica R.C. and Cremonini R. (2009): Nanoparticles and higher plants. Caryologia; 62: 161–165. |
[8] | Chen, R.; Ratnikova, T.A.; Stone, M.B.; Lin, S.; Lard, M.; Huang, G.; Hudson, J.S.; Ke, P.C. 2010. Differential uptake of carbon nanoparticles by plant and mammalian cells.Small, 6, 612–617. |
[9] | Rico, C.M.; Majumdar, S.; Duarte-Gardea, M.; Peralta-Videa, J.R.; Gardea-Torresdey, J. L. 2011. Interaction of nanoparticles with edible plants and their possible implications in the food chain.J. Agric. Food Chem, 59, 3485–3498. |
[10] | Poelman, E.H.; van Loon, J.J.A.; Dicke, M. 2008. Consequences of variation in plant defense for biodiversity at higher trophic levels. Trends Plant. Sci., 13, 534–541. |
[11] | Mishra, V.K.; Kumar, A. 2009. Impact of metal nanoparticles on the plant growth promoting rhizobacteria, Dig. J. Nanomater. Biostruct, 4, 587–592. |
[12] | Khodakovskaya, M.V.; de Silva, K.; Nedosekin, D.A.; Dervishi, E.; Biris, A.S.; Shashkov, E.V.; Galanzha, E.I.; Zharov, V.P. 2011. Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions.Proc. Natl. Acad. Sci. USA., 108, 1028–1033. |
[13] | Chen X., Schluesener H.J. 2008. Nanosilver :nano product in medical application. Toxicol.Lett., 176: 1 – 12. |
[14] | Lu, C.M.; Zhang, C.Y.; Wen, J.Q.; Wu, G.R.; Tao, M.X. 2002. Research of the effect of nanometer materials on germination and growth enhancement of glycine max and its mechanism.Soybean Sci., 21, 168–172. |
[15] | Gao, F.Q.; Liu, C.; Qu, C.X.; Zheng, L.; Yang, F.; Su, M.G.; Hong, F.H. 2008. Was improvement of spinach growth by nano-TiO2 treatment related to the changes of rubiscoactivase? Biometals, 21, 211–217. |
[16] | Murashige T. and Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473–497. |
[17] | Ewais E.A.; Desouky S.A. and Eshazly E. H. 2015. Studies on callus induction, phytochemical constituents and antimicrobial activity of Solanum nigrum L.(Solanaceae). Nature and Science; 13 (6): 133-138. |
[18] | Lee, K.J., S.H. Park, M. Govarthanan, P. Hwang, Y.S. Seo, M. Cho, W.H. Lee, J.Y. Lee, S.K. Kannan and B.T. Oh, 2013. Synthesis of silver nanoparticles using cow milk and their antifungal activity against phytopathogens. Materials Letters, 105: 128-131. |
[19] | Moharram, M.A., S.K.H. Khalil, W.A. Khalil, A.G. Hegazi and H.H.A. Sherif, 2013. Antibacterial activity of chitosan-silver nanoparticles composite of different AgNO: Cs ratios. Egyptian Journal of Biophysics, 16: 20-25. |
[20] | Jonhansen, D. A. 1940. Plant Microtechnique. New York, McGraw-Hill Book Company Inc., 523 p. |
[21] | Sass, J. E. 1951. Botanical microtechnique (2nd. ed.) Ames, Iowa State College Press, 228 p. |
[22] | Sass, J.E. 1961. Botanical Micro technique.Third edition.The IOWA State University Press.Amess. Iowa. |
[23] | Laemmli U. K. 1970. Cleavage of structural proteins during the assembly of the head bacteriophage T4.Nature, 227: 680–685. |
[24] | Jaccard P. 1908. Novel research on the floral distribution. Bull. Soc. Vaud. Sci. Nat., 44: 223–270. |
[25] | Sneath, P.H. and Sokal, R.R. 1973. Numerical taxonomy: The principles and practice of numerical classification. Freeman andCompany, San Francisco. |
[26] | Salama H.M.H. 2012. Effects of silver nanoparticles in some crop plants, Common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). International Research Journal of Biotechnology. Vol. 3(10) pp. 190-197. |
[27] | Krystofova O., Sochor J. Zitka O. Babula P. Kudrle V, Adam V. and Kizek R. 2013. Effect of magnetic nanoparticles on tobacco BY-2 cell suspension culture. Int. Environ. Res. Public Health. 10: 47-71. |
[28] | Harajyoti M. and Ahmed G.U. 2011. Phytotoxicity effect of Silver nanoparticles on Oryzasativa.International Journal of ChemTech Research. Vol. 3, No.3, pp 1494-1500. |
[29] | Krishnaraj C. Jagan, E.G. Ramachandran R. Abirami S.M. Mohan N. and Kalaichelvan P.T. 2012. Effect of biologically synthesized silver nanoparticles on Bacopamonnieri (Linn.) Wettst. Plant growth metabolism.Process Biochemistry, 47(4): 651-658. |
[30] | Khodakovskaya, M. Dervishi, E. Mahmood, M. Xu, Y. Li, Z. Watanabe, F. and Biris, A.S. 2009. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano, 3 (10): 3221-3227. |
[31] | Cobbett, C.S. 2001. Heavy metal detoxification in plants: Phytochelatin biosynthesis and function. IUBMB Life, 51: 183-188. |
[32] | Cummins, I; Dixon, D.P.; Freitag-Pohl, S.; Skipsey, M. and Edwards, R. 2011 Multiple roles for plant gluthionetransferases in xenobiotic detoxification. Drug Metab. Rev., 43: 266=280. |
[33] | Bekheta M.A., Abbasm S., El-Kobisy O.S. and Mahagoub M.H. 2008. Influence of selenium and paclobutrazole on growth, metabolism, activities and anatomical characters of Gerbera jasmoniiL. Australian J. of Basic and Applied Science, 2(4): 1284-1297. |
[34] | Candida V., Guido D., Elisabetta O., Bhakti P., Milena M., Luca E. and Marcella B. 2013. Morphological and proteomic responses of Erucasativa exposed to silver nanoparticles or silver nitrate. PLoS One. 8(7): e68752. |
[35] | Abdel-Azeem E.A. and Elsayed B.A. 2013. Phytotoxicity of silver nanoparticles on Viciafabaseedlings. New York Science Journal; 6(12):148-156. |
[36] | Supriyo C., Arpita B. and Surekha K. 2014. Green synthesis of protein capped silver nanoparticles from phytopathogenic fungus Macrophominaphaseolina (Tassi) Goid with antimicrobial properties against multidrug-resistant bacteria. Nanoscale Research Letters 2014, 9:365. |
[37] | Wang, J.; Asbach, C.; Fissan, H.; Hulser, T.; Kuhlbusch, T.A.J.; Thompson, D.; Pui, D.Y.H. 2011. How can nanobiotechnology oversight advance science and industry: Examples from environmental, health, and safety studies of nanoparticles (nano-EHS). J. Nanopart. Res, 13, 1373–1387. |
[38] | Hoshino, A.; Manabe, N.; Fujioka, K.; Suzuki, K.; Yasuhara, M.; Yamamoto, K. 2007. Use of fluorescent quantum dot bioconjugates for cellular imaging of immune cells, cell organelle labeling, and nanomedicine: Surface modification regulates biological function, including cytotoxicity. J. Artif. Organs, 10, 149–157. |
[39] | McCarthy, J.R.; Bhaumik, J.; Karver, M.R.; Erdem, S.S.; Weissleder, Targeted R. 2010. Nanoagents for the detection of cancers. Mol. Oncol., 4, 511–528. |