[1] | S.U.S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles”, Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, CA, USA, 1995. |
[2] | Xiang-Qi Wang; Arun S. Mujumdar “Heat transfer characteristics of nanofluids-areview”,International Journal of Thermal Sciences, 46, 1-19, 2007. |
[3] | Xiang-Qi Wang; Arun S. Mujumdar “A review on nanofluids - part II:experiments and applications”, Braz. J.Chem. Eng.,25, 631-648, 2008. |
[4] | H. Masuda, A. Ebata, K. Teramae, N. Hishinuma, “Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (Dispersion of G-Al2O3, SiO2 and TiO2 ultra-fine particles)”, Netsu Bussei (Japan) 4, 227–233, 1993. |
[5] | J.A. Eastman, S.U.S. Choi, S. Li, L.J. Thompson, S. Lee, “Enhanced thermal conductivity through the development of nanofluids”, Fall meeting of the Materials Research Society (MRS), Boston, USA, 1996. |
[6] | S. Lee, S.U.S.Choi, S. Li, J.A. Eastman, “Measuring thermal conductivity of fluids containing oxide nanoparticles” Journal of Heat Transfer, Transactions ASME 121, 280–289, 1999. |
[7] | Y.M. Xuan, Q. Li, “Heat transfer enhancement of nanofluids”, International Journal of Heat and Fluid Flow 21, 58–64, 2000. |
[8] | J.A. Eastman, S.U.S. Choi, S. Li, W.Yu, L.J. Thompson, “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles”, Applied Physics Letters 78, 718–720, 2001. |
[9] | Keblinski, S.R. Phillpot, S.U.S. Choi, J.A. Eastman, “Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids)”, International Journal of Heat and Mass Transfer 45, 855–863, 2002. |
[10] | H. Xie, J. Wang, T.G. Xi, Y. Liu, F. Ai, “Thermal conductivity enhancement of suspensions containing nano sized alumina particles”, Journal of Applied Physics 91, 4568–4572, 2002. |
[11] | H. Xie, J. Wang, T.G. Xi, Y. Liu, F. Ai, “Thermal conductivity enhancement of suspensions containing nano sized alumina particles” Journal of Applied Physics 91, 4568–4572, 2002. |
[12] | B.X. Wang, L.P. Zhou, X.F. Peng, “A fractal model for predicting the effective thermal conductivity of liquid with suspension of nano particles”, International Journal of Heat and Mass Transfer 46, 2665–2672, 2003. |
[13] | D.S. Wen, Y.L. Ding, “Effective thermal conductivity of aqueous suspensions of carbon nano tubes (Nanofluids)”, Journal of Thermophysics and Heat Transfer 18 (4), 481–485, 2004. |
[14] | P. Bhattacharya, S.K. Saha, A. Yadav, R.S. Prasher, “Phelan and Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids”, Journal of Applied Physics 95, 6492–6494 , 2004. |
[15] | S.P. Jang, S.U.S. Choi, “Role of Brownian motion in the enhanced thermal conductivity of nanofluids”, Applied Physics Letters 84 (21),4316–4318, 2004. |
[16] | T.K. Hong, H.S. Yang, C.J. Choi, “Study of the enhanced thermal conductivity of Fe nanofluids”, Journal of Applied Physics 97, 06411-1-4, 2005. |
[17] | D. Wen, Y. Ding, “Formulation of nanofluids for natural convective heat transfer applications”, International Journal of Heat and Fluid Flow 26 (6) (2005a) 855–864. |
[18] | S.Lee, S.U.S. Choi, “ Application of metallic nanoparticle suspensions in advanced cooling systems”, International Mechanical Engineering Congress and Exhibition, Atlanta, USA, 1996. |
[19] | B.C. Pak, Y.I. Cho, 1999. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer 11, 151–170. |
[20] | Y.M. Xuan, Q. Li, 2003. Investigation on convective heat transfer andflow features of nanofluids. ASME Journal of Heat Transfer 125, 151–155. |
[21] | Y.M. Xuan, Q. Li, 2003. Investigation on convective heat transfer and flow features of nanofluids. ASME Journal of Heat Transfer 125, 151–155. |
[22] | Putra, W. Roetzel, S.K. Das, “Natural convection of nanofluids”, Heat and Mass Transfer 39, 775–784, 2003. |
[23] | K. Khanafer, K. Vafai, M. Lightstone, “Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids”, International Journal of Heat and Mass Transfer 46, 3639–3653, 2003. |
[24] | D.S. Wen, Y.L. Ding, 2004. Experimental investigation into convective heat transfer of nanofluids at entrance area under laminar flow region, International Journal of Heat and Mass Transfer 47 (24), 5181–5188. |
[25] | Roy, C.T. Nguyen, P.R. Lajoie, “Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids”, Superlattices and Microstructures 35, 497–511, 2004. |
[26] | S.E.B. Maiga, C.T. Nguyen, N. Galanis, G. Roy, “Heat transfer behaviours of nanofluids in a uniformly heated tube”, Super lattices and Microstructures 26 (4), 543–557, 2004. |
[27] | Y. Yang, Z. Zhang, E. Grulke, W. Anderson, G. Wu, “Heat transfer properties of nano particle-in-fluid dispersions (nanofluids) in laminar flow”, International Journal of Heat Mass transfer 48, P1107–P1116, 2005. |
[28] | A.G.A. Nanna, T. Fistrovich, K. Malinski and S.U.S. Choi, “Thermal transport phenomena in buoyancy-driven nanofluids”, in Proceedings of 2005 ASME International Mechanical Engineering Congress and RD&D Exposition, 15-17 November 2004, Anaheim, California, USA, (2005). |
[29] | A.G.A. Nanna and M. Routhu, “Transport phenomena in buoyancy-driven nanofluids– Part II”, in Proceedings of 2005 ASME Summer Heat Transfer Conference, San Francisco, California, USA, 17-22 July 2005. |
[30] | S.K. Das, N. Putra, W. Roetzel, “Pool boiling characteristics of nano-fluids” International Journal of Heat and Mass Transfer 46, 851–862, 2003a. |
[31] | S.K. Das, N. Putra, W. Roetzel, “Pool boiling of nano-fluids on horizontal narrow tubes”, International Journal of Multiphase Flow 29, 1237–1247, 2003b. |
[32] | S.M . You, J.H. Kim, K.H. Kim, “Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer”, Applied Physics Letters 83, 3374–3376, 2003. |
[33] | C.H. Li, B.X. Wang, X.F. Peng, “Experimental investigations on boiling of nano-particle suspensions”, Boiling Heat Transfer Conference, Jamica, USA, 2003. |
[34] | S. Witharana, “Boiling of refrigerants on enhanced surfaces and boiling of nanofluids”, Ph.D. Thesis, The Royal Institute of Technology, Stockholm, Sweden, 2003. |
[35] | P. Vassallo, R. Kumar, S. Damico, “Pool boiling heat transfer experiments in silica-water nano-fluids”, International Journal of Heat and Mass Transfer 47, 407–411, 2004. |
[36] | J.P. Tu, N. Dinh, T. Theofanous, “An experimental study of nano fluid boiling heat transfer”, In Proceedings of 6th International Symposium on Heat Transfer, China, 2004. |
[37] | D.S. Wen and Ding Y.L., “Experimental investigation into the pool boiling heat transfer of aqueous based alumina nanofluids”. Journal of Nanoparticle Research,7, 265–274,2005 |
[38] | M.K Ramis, Jawaz Pasha, Shebeer A Rahim, “Heat Transfer Enhancement Using CuO Nanofluids -The Effect of Sonication Time on the Paradoxical Behaviour”, International Journal of Engineering Science and Technology, Vol. 4 .07 (2012), pp 3514-3520. |