[1] | F. Baletto, R. Ferrando, Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects Rev Mod Phys 77, 371-423 (2005). |
[2] | D. Vollath, Nanomaterials: an introduction to synthesis, properties and applications (Wiley-VCH; Weinheim 2008) |
[3] | P.H. Buffat, J.P. Borrel, Size effect on the melting temperature of gold particles Phys. Rev. A 13, 2287-2298 (1976). |
[4] | D.P. Rojas, L. Fernandez-Barquin, J. Rodriguez Fernandez, L. Rodriguez Fernandez, G. Gonzalez, Phonon softening on the specific heat of nanocrystalline metals, Nanotechnology 21, 445702 (2010). |
[5] | V.I. Klimov, Semiconductor and metal nanoparticles, (Marcel Dekker Inc New York 2004). |
[6] | C.X. Wang, G.W. Yang, Thermodynamics of metastable phase nucleation at the nanoscale, Mater Sci Eng R 49, 157-202 (2005). |
[7] | W. Bollmann, N.F. Uvarov, E.F. Hairetdinov, Estimation of point-defect parameters of solids on the basis of a defect formation model of melting, Cryst. Res. Technol 24, 421-435 (1989). |
[8] | Y. Kraftmakher, Equilibrium vacancies and thermophysical properties of metals, Phys Rep 299, 79-188 (1998). |
[9] | E.K. Richmann, J.E. Hutchison, The Nanomaterial Characterization Bottleneck, ACS Nano 3, 2441-2446 (2009). |
[10] | J.T. Yates Jr., Photochemistry on TiO2: Mechanism behind the surface chemistry, Surf Sci 603, 1605-1612 (2009). |
[11] | P.C. Ricci, A. Casu, M. Salis, R. Corpino, A. Anedda, Optically Controlled Phase Variation of TiO2 Nanoparticles J Phys Chem C 114, 14441-14445 (2010). |
[12] | F.C. Gennari, D.M. Pasquevich, Kinetics of the anatase-rutile transformation in TiO2 in the presence of Fe2O3, J. Mater. Sci. 33, 1571-1578 (1998). |
[13] | M. Salis, P.C. Ricci, A. Anedda, Thermodynamics of optically assisted desorption of oxygen from TiO2 nanoparticle surface, J. Non-equilib Thermodyn (2012); DOI: 10.1515/jnetdy-2011-0033. |
[14] | F. Agullo-Lopez, C.R.A. Catlow, P.D. Townsed, Point Defects in Materials (Academic Press, London 1988). |
[15] | M. Muller, K. Albe, Concentration of Thermal Vacancies in Metallic Nanoparticles, Acta Mater 55, 3237-3244 (2007). |
[16] | P. Tyagi, R.R. Cooney, S.L. Sewall, D.M. Sagar, J.I. Saari, P. Kambhampati, Controlling Piezoelectric Response in Semiconductor Quantum Dots via Impulsive Charge Localization, Nano Lett. 10, 3062-3067 (2010). |
[17] | S. K. Sharma, K. Sudarshan, P. Maheshwari, D. Dutta, P. K. Pujari, C. P. Shan, M. Kumar, P. Bajaj, Direct evidence of Cd vacancies in CdSe nanoparticles: positron annihilation studies, Eur. Phys. J. B 82, 335-340 (2011). |
[18] | M. Marceddu, M. Saba, F. Cuochi, A. Lai, J. Huang, D.V. Talapin, A. Mura, G. Bongiovanni, Charged excitons, Auger recombination and optical gain in CdSe/CdS nanocrystals, Nanotechnology 23, 015201 (2012). |
[19] | L. Vaccaro, A. Morana, V. Radzig, M. Cannas, Bright visible luminescence in Silica nanoparticles, J. Phys. Chem. C 115, 19476-19481 (2011) |
[20] | C.M. Carbonaro, P.C. Ricci, R. Corpino, M. Marceddu, A. Anedda, Photoluminescence characterization of aged and regenerated mesoporous silica, Journal of Non-Crystalline Solids 357, 1904-1907 (2011). |
[21] | M Salis, C M Carbonaro, R Corpino, A Anedda and P C Ricci, Investigation of energy transfer in terbium doped Y2SiO5 phosphor particles J. Phys.: Condens. Matter 24, 295401 (2012). |
[22] | P.C. Ricci, C.M. Carbonaro, R. Corpino, C. Cannas, M. Salis. Optical and structural characterization of Terbium-doped Y2SiO5 phosphor particles J Phys Chem C 115, 16630-16636 (2011). |
[23] | W.H. Qi, M.P. Wang, M . Zhou, W.Y. Hu, Surface-Area-Difference model for Thermodynamic properties of metallic nanocrystals, J Phys D: Appl. Phys 38, 1429-1436 (2005). |
[24] | W.H. Qi, M.P. Wang, Vacancy formation energy of small particles J Mat Sci 39, 2529-2530 (2004). |
[25] | D. Xie, M.P. Wang, L.F. Cao, Comment on “Vacancy formation energy of small particles”, J Mater Sci 40, 3565-3566 (2005). |
[26] | N.T. Gladkikh, A.P. Ktyshtal, S.I. Bogatyrenko, Melting temperature of nanoparticles and the energy of vacancy formation in them, Tech Phys 55, 1657-1660 (2010). |
[27] | N.T. Gladkikh, O.P. Krystal, On the size dependence of the vacancy formation energy, Func Mater 6, 823-827 (1999). |
[28] | G. Guisbiers, Schottky Defects in Nanoparticles, J Phys Chem C 115, 2616-2621 (2011). |
[29] | ] T.L. Hill, Thermodynamics of small systems, J Chem Phys 12, 3182-3197 (1962). |
[30] | H.H. Farrell, C.D. Van Siclen, Binding energy, vapor pressure, and melting point of semiconductor nanoparticles, J Vac Sci Technol B 25, 1441-1447 (2007). |
[31] | R. Shuttleworth, The surface tension of solids, Proc R Soc A 63, 444-457 (1950). |
[32] | N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College Publishing, New York 1976). |
[33] | R.H. Fowler, E.A. Guggenheim, Statistical Thermodynamics (Cambridge University Press, Cambridge UK 1956). |
[34] | I. Galanakis, N. Papanikolaou, P.H. Dederichs, Applicability of the broken-bond rule to the surface energy of the fcc metals, Surf Sci 511, 1-12 (2002). |
[35] | C.P. Flynn, Point defects and Diffusion (Clarendon Press. Oxford 1972). |
[36] | D. Ferrer, D. A. Blom, L. F. Allard, S. Mejìa, E. P. Tijerina, M. José-Yacamàn, Atomic structure of three-layer Au/Pd nanoparticles revealed by aberration-corrected scanning transmission electron microscopy J Mat Chem 18, 2442-2446 (2008). |