Nanoscience and Nanotechnology
p-ISSN: 2163-257X e-ISSN: 2163-2588
2011; 1(2): 43-47
doi: 10.5923/j.nn.20110102.08
P. Venkatesan , J. Santhanalakshmi
Department of Physical Chemistry, University of Madras, Guindy Campus, A.C.Tech., Chennai, Tamil Nadu, 600025, India
Correspondence to: P. Venkatesan , Department of Physical Chemistry, University of Madras, Guindy Campus, A.C.Tech., Chennai, Tamil Nadu, 600025, India.
Email: |
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved.
Colloidal dispersions of bimetallic nanoparticles composed of gold and palladium were prepared by wet chemical method, in which Au(III) and Pd(II) ions in an aqueous solution in the presence of a cationic surfactant, Cetyltrimethylammonium bromide (CTAB). The structure and composition of the metallic nanoparticles were characterized by UV-visible spectroscopy (UV-Vis), High-resolution transmission electron microscopy (HRTEM), Scanning electron microscopy (SEM-EDX), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). Transmission electron microscopy photographs showed spherical particles whose size had a fairly narrow distribution with a geometric mean diameter about 9.4 nm. Analyses with UV-Vis spectra indicated that Au(III) ions were first reduced and after their consumption reduction of Pd(II) ions set in. A core-shell structure of the particles, a core of gold and a shell of palladium was confirmed by high-resolution TEM and X-ray diffraction. The catalytic activities of nanoparticles are tested on the hydrogenation reaction between NaBH4 and 4-Nitrophenol reduction was studied spectrophotometrically. Bimetallic nanoparticles exhibited better catalysis that the mono metallic nanoparticles, which may be due to the electronic effects of the core to shell metal atoms.
Keywords: Gold Nanoparticle, Palladium Nanoparticle, Gold-Palladium Bimetallic Nanoparticles, Hydrogenation, 4-Nitrophenol, Kinetic Study
Cite this paper: P. Venkatesan , J. Santhanalakshmi , "Core-Shell Bimetallic Au-Pd Nanoparticles: Synthesis, Structure, Optical and Catalytic Properties", Nanoscience and Nanotechnology, Vol. 1 No. 2, 2011, pp. 43-47. doi: 10.5923/j.nn.20110102.08.
Figure 2. HRTEM images of the bimetallic nanoparticles (Au:Pd, 1:1) |
Figure 3. XRD pattern of mono metallic (a, b) and bimetallic nanoparticles (c) |
Figure 4. XPS spectra of mono metallic (a, b) and bimetallic nanoparticles (c) |
Figure 5. SEM-EDX spectra of mono metallic (a, b) and bimetallic nanoparticles (c) |
Figure 6. FTIR spectra of (a) CTAB, (b) Aunp (c) Pdnp and (d) Au/Pdnp, in KBr pellet at 25oC |
Figure 7. Time variance reduction of 4-Nitrophenol in Au-Pd bimetallic nanoparticles |
[1] | Shiho Tokonami, Nobuyasu Morita, Kanako Takasaki, and Naoki Toshima, J. Phys. Chem. C, 2010, 114 (23), 10336 |
[2] | Serpell, J. Christopher, Cookson, James; Ozkaya, Dogan; Beer, Paul D. Nature Chemistry 2011, 3(6), 478 |
[3] | M. J. Hostetler, C. J. Zhong, B. K. H. Yen, J. Anderegg, S. M. Gross, N. D. Evans, M. Porter and R. W. Murray, J. Am. Chem. Soc. 1998, 120, 9396 |
[4] | Dingsheng Wang and Yadong Li, Adv. Mater. 2011, 23, 9, 1044 |
[5] | M. C. Daniel and D. Astruc, Chem. Rev. 2004, 104, 293 |
[6] | I. Srnova-Sloufova, B. Vlckova, Z. Bastl and T. L. Hasslett, Langmuir 2004, 20, 3407 |
[7] | T. Shibata, B. A. Bunker, Z. Zhang, D. Meisel, C. F. Vardeman and J. D. Gezelter, J. Am. Chem. Soc. 2002, 124, 11989 |
[8] | M. Moskovits, I. Srnova-Sloufova and B. Vlckova, J. Chem. Phys.2002, 116, 10435 |
[9] | C. J. Zhong and M. M. Maye, Adv. Mater. 2001, 13, 1507 |
[10] | J. S. Bradley, In Clusters and Colloids; Schmid, G., Ed.; Wiley- VCH: Weinheim 1994; Chapter 6 |
[11] | L.N. Lewis, Chem. Rev. 1993 93, 2693 |
[12] | G. Schmid (eds), Cluster and Colloids: From Theory to Applications, (VCH, New York, 1994) |
[13] | N. Toshima and T. Yonezawa, New J. Chem. 1998, 1179. |
[14] | J.H. Sinfelt, Accounts Chem. Res. 1987, 20, 134 |
[15] | M. Brust, M. Walker, D. Bethell, D. J. Schiffrin and R. Whyman, J. Chem. Soc., Chem. Commun. 1994, 801 |
[16] | M. J. Hostetler, J. E. Wingate, C. J. Zhong, J. E. Harris, R. W. Vachet, M. R. Clark, J. D. Londono, S. J. Green, J. J. Stokes, G. D. Wignall, G. L. Glish, M. D. Porter, N. D. Evans and R. W. Murray, Langmuir 1998, 14, 17 |
[17] | Christopher J. Serpell, James Cookson, Dogan Ozkaya and Paul D. Beer, Nature Chemistry. 2011, 3, 478 |
[18] | S. Ajaikumar, J. Ahlkvist, W. Larsson, A. Shchukarev, A. R. Leino, K. Kordas and J. P. Mikkola. Applied Catalysis A, General. 2011, 392, (1-2), 11 |
[19] | M. Valden, X. Lai and D. W. Goodman, Science 1998, 281, 1647 |
[20] | G. C. Bond and D. T. Thompson, Gold Bull. 2000, 33, 41 |
[21] | G. C. Bond, Catal. Today 2002, 72, 5 |
[22] | J. Santhanalakshmi. P. Venkatesan. J. Nanopar. Res. 2011, 13, 479 |
[23] | M. J. Kim, H. J. Na, K. C. Lee, E. A. Yoo and M. Y. Lee, J. Mater. Chem. 2003, 13, 1789 |
[24] | C. Fan and L. Jiang, Langmuir 1997, 13, 3059 |
[25] | S. Link, and M. A. El-Sayed, J. Phys. Chem. B 1999, 103, 8410 |
[26] | S. Link, Z. L. Wang and M. A. El-Sayed, J. Phys. Chem. B 1999, 103, 3529 |
[27] | Y. S. Shon, G. B. Dawson, M. Porter and R. W. Murray, Langmuir 2002, 18, 3880 |
[28] | B. R. Gonzalez, A. S. Iglesias, M. Giersig and L. M. L. Marzan, Faraday Discuss. 2004, 125, 133 |
[29] | D. H. Chen and C. J. Chen, J. Mater. Chem. 2002, 12, 1557 |
[30] | Y. M. Chung and H. K. Rhee, Catal. Lett. 2003, 85 (3–4) 159 |
[31] | Y. M. Chung and H. K. Rhee, J. Mol. Catal. A: Chemical 2003, 206, 291 |
[32] | Y.M. Chung and H. K. Rhee, J. Colloid Interf. Sci. 2004, 271, 131 |
[33] | J. J. Gao, J. Fu, C. Lin, J. Lin, Y. Han, X. Yu and C. Pan. Langmuir, 2004, 20, 9775 |
[34] | X. S. Wang, H. Wang, N. Coombs, M.A. Winnik and I. Manners. J. Am. Chem. Soc. 2005, 127, 8924 |
[35] | R. C. Doty, T.R. Tshikhudo, M. Brust and D.G. Fernig, Chem. Mater. 2005, 17, 4630 |