[1] | Andrews N, File SE (1992) Are there changes in sensitivity to 5-HT3 receptor ligands following chronic diazepam treatment? Psychopharmacology (Berl) 108:333–337. |
[2] | Bauer EP (2014) Serotonin in fear conditioning processes. Behav Brain Research 277: 68-77. (http://www.sciencedirect.com). |
[3] | Bush DE, Vaccarino FJ (2007) Individual differences in elevated plus-maze exploration predicted progressive-ratio cocaine self-administration break points in Wistar rats. Psychopharmacology (Berl) 194 (2): 211-9. |
[4] | Camp MC, MacPherson KP, Lederle L, Graybeal C, Gaburro S, DeBrouse LM, Ihne JL, Bravo JA, O’Connor RM, Ciocchi S, Wellman CL, Lüthi A, Cryan JF, Singewald N, Holmes A (2012) Genetic Strain Differences in Learned Fear Inhibition Associated with Variation in Neuroendocrine, Autonomic, and Amygdala Dendritic Phenotypes. Neuropsychopharmacology 37: 1534-1547. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3327858/). |
[5] | Campbell BM, Merchant KM (2003) Serotonin 2C receptors within the basolateral amygdale induce acute fear-like responses in an open-field environment. Brain Res 993 (1-2): 1-9. |
[6] | Carobrez AP, Bertoglio LJ (2005) Ethological and temporal analyses of anxiety-like behavior: The elevated plus-maze model 20 years on. Neurosci and Biobehav Rev 29 (8): 1193-1205. |
[7] | Cruz AP, Frei F, Graeff FG (1994) Ethopharmacological Analysis of Rat Behavior on the Elevated Plus-Maze. Pharmacology Biochemistry and Behavior (49): 171-176. |
[8] | De Mello Cruz AP, Pinheiro G, Alves SH, Ferreira G, Mendes M, Faria L, Macedo CE, Motta V, Landeira-Fernandez J (2005) Behavioral effects of systemically administered MK-212 are prevented by ritanserin microinfusion into the basolateral amygdale of rats exposed to the elevated plus-maze. Psychopharmacology 182(3): 345-354. |
[9] | Ennaceur A (2014) Tests of unconditioned anxiety - pitfalls and disappointments. Physiol Behav (135): 55-71. |
[10] | Ferreira R, Nobre MJ (2014) Conditioned fear in low- and high-anxious rats is differentially regulated by cortical subcortical and midbrain 5-HT1A receptors. Neurosci 268: 159–168. |
[11] | Gomes VC. Hassan W, Maisonnette S, Johnson LR, Ramos A, Landeira-Fernandez (2013) Behavioral evaluation of eight rat lines selected for high and low anxiety-related responses. Behav Brain Res 257: 39-48. |
[12] | Gonzalez LE, Andrews N, File SE (1996) 5-HT1A and benzodiazepine receptors in the basolateral amygdala modulate anxiety in the social interaction test, but not in the elevated plus-maze. Brain Res 732(1-2):145-53. |
[13] | Griebel G (1995) 5-hydroxytryptamine-interacting drugs in animal models of anxiety disorders: more than 30 years of research. Pharmacol Ther 65: 319-395. |
[14] | Hogg S (1996) A review of the validity and variability of the elevated plus-maze as an animal model of anxiety. Pharmacol Biochem Behav 54(1): 21-30. |
[15] | Lane HY, Lee CC, Liu YC, Chang WH (2005) Pharmacogenetic studies of response to risperidone and other newer atypical antipsychotics. Pharmacogenomics 6:139–149. |
[16] | Landgraf R, Wigger A (2002) High vs. Low Anxiety-Related Behavior Rats: An Animal Model of Extremes in Trait Anxiety. Behavior Genetics 32: 301-314. |
[17] | Lanzenberger RR, Mitterhauser M, Spindelegger C, Wadsak W, Klein N, Mien LK, Holik A, Attarbaschi T, Mossaheb N, Sacher J, Geiss-Granadia T, Kletter K, Kasper S, Tauscher J (2007) Reduced serotonin-1A receptor binding in social anxiety disorder. Biol Psychiatry 61(9):1081-9. |
[18] | Leite-Panissi CR, Ferrarese AA, Terzian AL, Menescal-de-Oliveira L (2006) Serotoninergic activation of the basolateral amygdala and modulation of tonic immobility in guinea pig. Brain Res Bull 69(4):356-64. |
[19] | Lester KJ, Eley TC (2013) Therapygenetics: Using genetic markers to predict response to psychological treatment for mood and anxiety disorders. Biol. Mood Anxiety Disord 3 (1): 4 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575379/). |
[20] | LeDoux, J.E. (2007) The amygdala. Curr. Biol. 17: 868-874. (http://0x9.me/v0CP2). |
[21] | Li Q, Luo T, Jiang X, Wang J (2012) Anxiolytic effects of 5-HT1A receptors and anxiogenic effects of 5-HT2C receptors in the amygdala of mice. Neuropharm 62(1):474-84. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3196065/) |
[22] | Lowry CA, Johnson PL, Hay-Schmidt A, Mikkelsen J, Shekhar A (2005) Modulation of anxiety circuits by serotonergic systems. Stress 8(4): 233–246. |
[23] | Martin-Ruiz R, Puig MV, Celada P, Shapiro DA, Roth BL, Mengod G, Artigas F (2001) Control of serotonergic function in medial prefrontal cortex by serotonin-2A receptors through a glutamate-dependent mechanism. J Neurosci 21: 9856 – 9866 (http://www.jneurosci.org/content/21/24/9856.long). |
[24] | McMahon FJ, Buervenich S, Charney D, Lipsky R, Rush AJ, Wilson AF, Sorant AJ, Papanicolaou GJ, Laje G, Fava M, Trivedi MH, Wisniewski SR, Manji H (2006) Variation in the gene encoding the serotonin 2A receptor is associated with outcome of antidepressant treatment. Am J Hum Genet 78:804–814. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1474035/). |
[25] | Nascimento JO, Kikuchi LS, de Bortoli VC, Zangrossi HJ, Viana MB (2014) Dorsomedial hypothalamus serotonin1A receptors mediate a panic-related response in the elevated T-maze. Brain Res Bull 109:39-45. |
[26] | Nichols DE, Nichols CD (2008) Serotonin receptors. Chem. Rev 108(5): 1614-41. |
[27] | Nobre MJ, Cabral A, Brandão ML (2010) GABAergic regulation of auditory sensory gating in low- and high-anxiety rats submitted to a fear conditioning procedure. Neurosci 171(4): 1152-63. |
[28] | Nunes-de-Souza RL, Canto-de-Souza A, da-Costa M, Fornari RV, Graeff FG, Pelá IR (2000) Anxiety-induced antinociception in mice: effects of systemic and intra-amygdala administration of 8-OH-DPAT and midazolam. Psychopharmacol 150 (3): 300-10. |
[29] | Olivier B, Pattij T, Wood SJ, Oosting R, Sarnyai Z, Toth M (2001) The 5-HT1A receptor knockout mouse and anxiety. Behav Pharmacol 12 (6-7): 439-450. |
[30] | Pavlova IV, Rysakova MP, Sergeeva MI (2016) Effects of Blockade of D1 and D2 Receptors in the Basolateral Amygdala on the Behavior of Rats with High and Low Levels of Anxiety and Fear J. Neurosci and Behav Physiology 46(9): 1059-1069. |
[31] | Pawlak CR, Karrenbauer BD, Schneider P, Ho YJ (2012) The Elevated Plus-Maze Test: Differential Psychopharmacology of Anxiety-Related Behavior. Emotion Rev 4 (1): 98-115. |
[32] | Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4rd edn. Academic Press, San Diego. |
[33] | Pytliak M, Vargova V, Mechirova V, Felšöci M (2011) Serotonin Receptors – From Molecular Biology to Clinical Applications. Physiol Res 60: 15-25. (http://www.biomed.cas.cz/physiolres/pdf/60/60_15.pdf). |
[34] | Rodgers RJ, Cao B-J, Dalvi A, Holmes A (1997) Animal models of anxiety: an ethological perspective. Braz J Med Biol Res 30: 289-304. |
[35] | Rysakova MP, Pavlova IV (2016) Differential Effect of Unilateral Amygdalar GABAA Receptor Agonist Injection on Low- and High-Anxiety Rats. J of Behav and Brain Sci 6: 9-18. (http://www.scirp.org/JOURNAL/PaperInformation.aspx?PaperID=62780). |
[36] | Shuhama R, Del-Ben M, Loureiro SR, Graeff FG (2007) Animal Defense Strategies and Anxiety Disorders. Anais da Academia Brasileira de Ciências 79: 97-109. (http://0x9.me/GudKI). |
[37] | Stam R (2007) PTSD and stress sensitisation: a tale of brain and body, Part 1: Human studies. Neurosci Biobehav Rev 31: 530-57. |
[38] | Stein DJ, Stahl S (2000) Serotonin and anxiety: current models. Int Clin Psychopharmacol 15 (2):S1-6. |
[39] | Strauss CV, Vicente MA, Zangrossi HJ (2013) Activation of 5-HT1A receptors in the rat basolateral amygdala induces both anxiolytic and antipanic-like effects. Behav Brain Res 246:103-10. |
[40] | Tauscher J, Bagby RM, Javanmard M, Christensen BK, Kasper S, Kapur S (2001) Inverse relationship between serotonin 5-HT(1A) receptor binding and anxiety: a [(11)C]WAY-100635 PET investigation in healthy volunteers. Am J Psychiatry 158 (8): 1326-8. (http://ajp.psychiatryonline.org/doi/full/10.1176/appi.ajp.158.8.1326). |
[41] | Toth M (2003) 5-HT1A receptor knockout mouse as a genetic model of anxiety. Eur J Pharmacol 463 (1-3): 177-84. |
[42] | Tovote P, Fadok JP, Lüthi A (2015) Neuronal circuits for fear and anxiety. Nat Rev Neurosci 16 (6): 317-31. (http://www.nature.com/nrn/journal/v16/n6/full/nrn3945.html?foxtrotcallback=true) |
[43] | Verheij MM, Veenvliet JV, Groot Kormelink T, Steenhof M, Cools AR (2009) Individual differences in the sensitivity to serotonergic drugs: a pharmacobehavioural approach using rats selected on the basis of their response to novelty. Psychopharm (Berl) 205 (3): 441-55. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2712066/). |
[44] | Vicente MA, Zangrossi HJ (2012) Serotonin-2C receptors in the basolateral nucleus of the amygdala mediate the anxiogenic effect of acute imipramine and fluoxetine administration. Int J Neuropsychopharm 14:1–12. (https://academic.oup.com/ijnp/article-lookup/doi/10.1017/S1461145711000873). |
[45] | Zangrossi HJ, Graeff FG (1994) Behavioral effects of intra-amygdala injections of GABA and 5-HT acting drugs in the elevated plus-maze. Braz J Med Biol Res 27 (10): 2453-6. |
[46] | Zangrossi HJ, Graeff FG (2014) Serotonin in anxiety and panic: Contributions of the elevated T-maze. Neurosci Biobehav Rev 46 (3): 397-406. |
[47] | Zangrossi HJ, Viana MB, Graeff FG (1999) Anxiolytic effect of intra-amygdala injection of midazolam and 8-hydroxy-2-(di-n-propylamino)tetralin in the elevated T-maze. Eur J Pharmacol 369(3): 267-270. |