[1] | C. Cerciganani, The Boltzmann equation and its applications, Springer-Verlag, 1988. |
[2] | K. Hess, Advanced Theory of Semiconductor Devices, 352p., Wiley-IEEE Press, 1999. |
[3] | N. Bogoliubov, Problemi dynami, Sov. Phys. JETP, vol. 10, p.256, 1946. |
[4] | J. R. Barker, “Quantum transport theory of high-field conduction in semiconductors,” J. of Physics C: Solid-State Physics, vol. 6, pp.2663-2684, 1973. |
[5] | C. Buet., S. Dellacherie, R. Sentis, "Numerical solution of an ionic Fokker-Planck equation with electronic temperature", Society for Industrial and Applied Mathematics (SIAM), vol. 39, no.4, pp. 1219-1253, 2001. |
[6] | A. Arnold, Quantum Fokker-Planck models: Kinetic versus density matrix formulations, [online]. Available: http://mail.math.ups-tlse.fr/~nanolab/Contents/Invited1.pdf, 2004. |
[7] | F. Capasso, Physics of Quantum Electron Devices, Heidelberg: Springer-Verlag, 1990. |
[8] | P. Holland, The quantum theory of motion, Cambridge University Press, New York, 1993. |
[9] | E. Wigner. On the quantum correction for thermodynamic equilibrium. Phys. Rev. vol. 40, pp. 749-759., 1932. |
[10] | W. Frensley, “Wigner function model of a resonant tunneling semiconductor devices,” Phys. Rev. B, vol. 36, no. 3, pp.1570-1580, 1987. |
[11] | L. Shifren and D. Ferry, “Particle Monte Carlo simulation of Wigner function tunneling,” Physics Letters A, vol. 285, pp.217-221, 2001. |
[12] | T. Shawki, G. Salmer and O. El-Sayed, “2-D simulation of degenerate hot electron transport in MODFET’s including DX center trapping,” IEEE Trans. CAD, Vol 9, no. 1, pp.11-17, 1990. |
[13] | M. Cramer and A. Crickenberger, "The Prandtl-Meyer function for dense gases," AIAA Journal, vol. 30, no. 4, pp. 561-564,1992. |
[14] | A. Abramo et al., “A comparison of numerical solution of the Boltzmann transport equation for high-energy electron transport in Si,'' IEEE Trans. Electron. Dev., vol.41, no.9, pp. 1646-1654, 1994. |
[15] | H.D. Rees, “Computer simulation of semiconductor devices,” J. Phys. C:Solid-State Phys., vol. 6, pp. 266-273, 1973. |
[16] | J-P. Aubert, J-C. Vassiere and J-P. Nougier, “Matrix determination of the stationary solution of the Boltzmann Equation for Hot Carriers in Semiconductors,” J. Appl. Phys. vol. 56, no. 4, pp.1128-1132, 1984. |
[17] | W. Fawcett, A. D. Boardman, and S. Swain, “Monte Carlo determination of electron transport properties in Gallium Arsenide,” J. Physics and Chemistry of Solids, vol. 31, pp. 1963-1990, 1970. |
[18] | C. Moglestue, “Monte Carlo particle simulation of hot electron plasma formed in p-n junction,” Electron. Lett., vol. 22, p. 397-379, 1972. |
[19] | C. Jacoboni and P.Lugli, The Monte Carlo method for semiconductor device simulation, Springer-Verlag, Vienna, 1989. |
[20] | K. Hess Ed., Monte Carlo device simulation: Full band and beyond, Kluwer Academic Press, Boston, 1991. |
[21] | M. Fischetti, S. Laux, P. Solomon, and A. Kumar, “Thirty years of Monte Carlo simulations of electronic transport in semiconductors: Their relevance to science and mainstream VLSI technology”, IBM Research Division, T. J. Watson Research Center, 10598 IWCE 10, Oct. 2004. |
[22] | M. Saraniti and S. M. Goodnick, “Hybrid fullband cellular automaton/Monte Carlo approach for fast simulation of charge transport in semiconductors,” IEEE Trans. Electron Devices, vol. 47, no. 10, 2000 |
[23] | T.-W. Tang and H. Gan, “Two formulations of semiconductor transport equations based on spherical harmonic expansion of the Boltzmann transport equation,” IEEE Trans. Electron Devices, vol. 47, no. 9, 2000. |
[24] | C. Jungemann, B. Meinerzhagen: "A Legendre Polynomial Solver for the Langevin Boltzmann Equation "J. Computational Electronics, vol. 3, pp. 157-160, 2004. |
[25] | C. Jungemann, Matthias Bollh?fer, B. Meinerzhagen " Convergence of the Legendre |
[26] | Polynomial Expansion of the Boltzmann Equation for Nanoscale Devices " ESSDERC, pp. 341-344, Grenoble (France), 2005. |
[27] | C. Auer and F. Schürrer, "Efficient time integration of the Boltzmann-Poisson system applied to semiconductor device simulation," J. Computational Electronics, pp. 5-14, vol. 5, no.1 , 2006. |
[28] | S.F. Liotta and H. Struchtrup, “Moment equations for electrons in semiconductors: Comparison of spherical harmonics and full moments,” Solid-State Electronics vol. 44, pp. 95-103, 2000. |
[29] | R. Stratton, “Diffusion of hot and cold electrons in semiconductor barriers,” Physical Review, vol. 126, pp. 2002-2014, 1962. |
[30] | K. Bløtekjaer, “Transport equations for electrons in two-valley semiconductors,” IEEE Trans. Electron devices, vol. ED-17, no. 1, pp. 38-47, 1970. |
[31] | M.S. Shur and L.F. Eastman, “Near ballistic transport in GaAs devices at 77K,” Solid-State Electronics, vol. 24, p. 11, 1981. |
[32] | J-P. Nougier, J. Vassiere, D. Gasquet, J. Zimmermann and C. Constant, “Determination of the transient regime in semiconductor devices using relaxation time approximation,'' J. Applied Physics, vol. 52, pp.825-832, 1981. |
[33] | R. Cook and J. Frey, “An efficient technique for 2-D simulation of velocity overshoot effects in Si and GaAs devices,” COMPEL, vol. 1, pp. 65-87, 1982. |
[34] | G. Baccarani G and M. Wordemann, “An investigation of steady-state velocity overshoot in Silicon”, Solid-State Electronics, vol. 28, pp. 407-416, 1985. |
[35] | C.C. McAndrew, E.L. Heasell and K. Singhal, “A comprehensive transport model for semiconductor device simulation,” Semicond. Sci Technology, vol. 2, pp.643-648, 1987. |
[36] | B. Meinerzhagen and W. Engl, "The influence of the thermal equilibrium approximation on the accuracy of classical 2-D numerical modeling of silicon submicrometer MOS transistors," IEEE Trans. Electron Devices, vol. ED-35, no.5, pp.689-97, 1988. |
[37] | N. Goldsman and J. Frey, “Efficient use of the energy transport method in device simulation,” IEEE Trans. Electron Devices, vol. 35, no. 9, 1988. |
[38] | M. Cheng and Kunhardt, "A theory of non-equilibrium carrier transport in multivalley semiconductors," J. Applied Physics, vol. 67, no. 4, pp. 1907-1914, 1990. |
[39] | M R. Thoma et al., “Hydrodynamic equations for semiconductors with nonparaboloc band structures,” IEEE Trans. on Electron Devices, vol. 38, no. 6, pp.1343-1352, 1991. |
[40] | D. Chen, E.C. Kan, U. Ravaioli, W.-C Shu and R.W. Dutton, “An improved energy transport model including nonparaboilicty and non-Maxwellian distribution Effects,'' IEEE Trans. Electron Dev. Lett., vol. 13, no. 1, pp.26-28, 1992. |
[41] | T-W. Tang and J. Nam, “An improved hydrodynamic transport model for silicon,” IEEE Trans. Electron Devices, vol. 40, no. 8, 1993. |
[42] | C.-S. Yao et al., "Formulation of a tail electron hydrodynamic model based on Monte Carlo results," Electron Dev. Lett., vol. 16, no. 1, pp. 26-29, 1995. |
[43] | M. Ieong and T-W. Tang, “Influence of hydrodynamic models on the prediction of submicrometer device characteristics,” IEEE Trans. on Electron Devices, vol. ED-44, no. 12, 1997. |
[44] | A. M. Anile, V. Romano and G. Russo, “Extended hydrodynamic model of carrier transport in semiconductors,” SIAM J. Applied Math, vol. 61, no. 1, pp. 74-101, 2000. |
[45] | T. Grasser, H. Kossina, M. Gritisch and S. Selberherr, “Using six moments of Boltzmann’s transport equation for device simulation,” J. Appl. Phys., vol. 90, no. 5, pp.2389-2396, 2001. |
[46] | M. Gritsch, H. Kosina, T. Grasser, and S. Selberherr, “Revision of the standard hydrodynamic transport model for SOI simulation,” IEEE Trans. Electron Devices, vol. ED-49, no. 10, pp.1814-1820, 2002. |
[47] | T. Grasser. T-W. Tang, H. Kosina and S. Selberherr, “A review of hydrodynamic and energy-transport models for semiconductor device simulation,” Proceedings of IEEE, vol. 91, no. 2, pp.251-274, 2003. |
[48] | C.Jungemann, T. Grasser, B.Neinhilus and B.Meinerzhagen, “Failure of moment-based transport models in nanoscale devices near equilibrium,” IEEE Trans. Electron Dev., vol. 52, no. 11, pp. 2404-2408, 2005. |
[49] | G.K. Batchelor, An Introduction to Fluid Dynamics, Cambridge Univ. Press, New York, 1967. |
[50] | I. Muller and T. Ruggeri, Extended Thermodynamics, Springer-Verlag, Berlin, 1993. |
[51] | S. M. Sze, Physics of Semiconductor Devices, Wiley, New York, 1986. |
[52] | J. Fourier, Théorie Analytique de la Chaleur, 1822, Reprint ISBN 2-87647-046-2, 670p, Gabay, 1988. |
[53] | H. Fröhlich, “On the theory of dielectric breakdown in solids,” Proc. Royal Soc., London, vol. I88-A, pp.521-532, 1947. |
[54] | J. Higman and K. Hess, “Comment on the use of the electron temperature concept for nonlinear transport problems in semiconductor p-n junctions,” Solid-State Electronics, vol. 29, no. 9, pp 915-918, 1986. |
[55] | W. Engl and H.K. Dorks, Models of physical parameters, in: An introduction to numerical analysis of semiconductor devices and integrated circuits, Boole Press, Dublin, 1981. |
[56] | S. Selberherr, On Modeling MOS-Devices, in: Simulation of semiconductor devices, Chapter 8, Elsevier Science Publishers, North-Holland, 1986. |
[57] | D. Caughey and R. Thomas, “Carrier mobility in silicon empirically related to doping and field,” IEEE Proceedings, vol. 54, pp. 2192-2193, 1967. |
[58] | J.M. Dorkel and Ph. Leturcq, “Carrier mobilities in silicon semi-empirically related to temperature, doping and injection level, Solid-State Electronics, vol. 24, pp. 821-825, 1981. |
[59] | D. B. Klassen, “A unified mobility model for device simulation-Part I: Model equations and concentration dependence,” Solid-State Electron., vol. 35, no. 7, pp.953-959, 1992. |
[60] | C. Canali,, G. Maijni, R. Minder and G. Ottaviani, “Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperature,” IEEE Trans. Electron Devices, vol. ED-22, pp. 1045-1047, 1975. |
[61] | M. H. El-Saba, “Accurate modeling of hot-carrier drift mobility in semiconductor devices,” Proceedings of the Int. Conf. of Microelectronics ICM VI , Cairo, 1995. |
[62] | W. Hänsch and M. Miura-Mattausch, “The hot-electron problem in small semiconductor devices,” J. Appl. Phys. vol. 60, pp. 650-656, 1986. |
[63] | M. H. El-Saba, Modélisation hydrodynamique des phénomènes de transport des porteurs chauds et de l’ionisation par impact dans les dispositives á semiconducteur, PhD Thesis, INSA Lyon, France, Order no. 93 ISAL 0072, 1993. |
[64] | K.K. Thornber, “Relation of drift velocity to low-field mobility and high-field saturation velocity,” J. Appl. Phys., vol. 51, pp. 2127-2136, 1980. |
[65] | A. G. Sabins and J.T. Clemens, “Characterization of the electron mobility in the inverted (100) Si surface,” IEDM Tech. Digest, Dec. 1979, pp. 18-21. |
[66] | K. Yamaguchi, “A mobility model for carriers in the MOS inversion layer,” IEEE Trans. Electron Devices, vol. 30, pp. 658-663, 1983. |
[67] | S.A. Schwarz et al., ”Semi-empirical equations for electron velocity in silicon: Part II- MOS inversion layer,” IEEE Trans. Electron Devices, vol. ED-30, no. 12, pp.1634-1639, 1983. |
[68] | M. Liang, J. Choi, P.K. Ko and C. Hu, “Inversion-layer capacitance and mobility of very thin gate oxide MOSFETs,” IEEE Trans. Electron Devices, vol. 33, p. 409, 1986 |
[69] | J. E. Chung, P.K. Ko and C. Hu, “A model for hot-electron-induced MOSFET linear-current degradation based on mobility reduction due to interface-state generation,” IEEE Trans. Electron Devices, vol. 38, no. 6, pp. 1362-1370, 1991. |
[70] | S. Takagi, A. Toriumi, M. Iwase and H. Tango, “On the universality of inversion layer mobility in Si. MOSFETs – Part I: Effects of substrate impurity concentration,” IEEE Trans. Electron Devices, vol. 41, no. 12, pp. 2357-2362, 1994. |
[71] | M. N. Darwish, J. L. Lentz, M. Pinto, P. Zeitzoff, T. J. Krutsick and H. Ha Vuong, “An Improved electron and hole mobility model for general purpose device simulation,” IEEE Trans. Electron Devices, vol. 44, no. 9, pp. 1529-15338, 1997. |
[72] | C. Lombardi, S. Manzini, A. Saporito and M. Vanzi, “A physically-based mobility model for numerical simulation of nonplolar devices,” IEEE Trans. Computer-Aided Design, vol. 7, no. 11, pp. 1164-1171, 1988. |
[73] | K. G. McKay, “Avalanche breakdown in Si,” Phys. Rev. vol. 94, pp.877-884, 1954. |
[74] | P. A. Wolff, “Theory of multiplication in silicon and germanium,” Phys. Rev., vol. 95, no. 6, pp.1415-1420, 1954. |
[75] | G.A. Baraff, “Distribution function and ionization rates for hot electrons in semiconductors, Phys. Rev. , vol. 128, no. 6, pp. 2507-2517, 1962. |
[76] | L. V. Keldish, “Concerning the theory of impact ionization in semiconductors,” Sov. Phys. JETP, vol. 21, pp. 1135-1144, 1965. |
[77] | A. G. Chynoweth, “Ionization rates for electrons and holes in Si,” Phys. Rev. vol. 109, no. 5, pp.1537-1540, 1958. |
[78] | C. A. Lee, R.A. Logan, R.L. Latdorf, J. Klimack and W. Wiegmann, “Ionization rates of holes and electrons in Si p-n junctions,” Phys. Rev. A, vol. 134, pp.761-773, 1964. |
[79] | R. Van Overstaten and H. De Man, “Measurement of the ionization rates in diffused Si p-n junctions,” Solid-State Electronics, vol. 13, pp.583-608, 1970. |
[80] | N. Kotani and S. Kawazu, “A Numerical analysis of avalanche breakdown in short-channel MOSFETs,” Solid-State Electronics, vol. 24, pp. 681-687, 1981. |
[81] | W. Maes, K. de Meyer, and R. Van Overstraeten, “Impact ionization in silicon: A review and update,” Solid–State Electron., vol. 33, pp.705–718, 1990. |
[82] | I. Takayanagi, K. Matsumoto, and J. Nakamura, “Measurement of electron impact ionization coefficient in bulk silicon under a low-electric field,” J. Appl. Phys., vol.72, pp.1989–1992, 1992. |
[83] | W. Grant, “Electron and hole ionization rates in epitaxial silicon at high electric fields,” vol. 16, pp. 1189-1203, 1973. |
[84] | W. Shockley, “Problems related to p-n junctions in silicon,” Solid-state Electronics, vol. 2, pp.35-67, 1961. |
[85] | S. Tam et al., Hot-electron current in very short channel MOSFETs,” IEEE Trans. Electron Dev. Lett., vol. 4, pp.249-251, 1983. |
[86] | Y-Z. Chen and T-W. Tang, “Numerical simulation of avalanche hot-carrier injection in short-channel MOSFETs,” IEEE Trans. Electron Devices, vol. 35, no. 12, 1988. |
[87] | N. Goldsman, L. Henrickson and J. Frey, “Reconciliation of a hot-electron distribution function with lucky electron exponential model in silicon,” IEEE Electron Dev. Let., vol. 11, no. 10, 1990. |
[88] | E. Schöll and W. Quade, “Effect of impact ionization on hot-carrier energy and momentum relaxation in Semiconductors”, J. Physics C. Solid-State Phys., vol. 20, pp. L861-L867, 1987. |
[89] | W. Quade, E. Schöll, and M. Rudan, “Impact ionization within the hydrodynamic approach to semiconductor transport,” Solid-State Electronics, vol. 36, no. 10, pp.1493–1505, 1993. |
[90] | K. Souissi, F. Odeh, H. Tang, A. Gnudi and P-F. Lu, “Investigation of the impact ionization in the hydrodynamic model,” IEEE Trans. Electron Dev. vol. 40, no. 8, pp. 1501-1507, 1993. |
[91] | E. Crabbe, J. Stork, G. Baccarani, M. Fischetti and S. Laux, “The impact of non-equilibrium transport on Breakdown in Transit Time in Bipolar Transistors,” IEDM Tech. Dig., p.463, 1990. |
[92] | D. Cassi and B. Ricco, “An analytical model of the energy distribution of hot electrons,” IEEE Trans. Electron Devices, vol. 37, no. 6, pp. 1514-1521, 1990. |
[93] | K. Matsuzawa, I. Kamohara and T. Wada, “Device simulation including energy transport with improved Physical Models,” NASECODE VII Trans., J.J. Miller Ed., Colorado, pp.173-174, 1991. |
[94] | C.-S. Yao et al., "Formulation of a tail electron hydrodynamic model based on Monte Carlo results," Elec. Dev. Lett., vol. 16, no. 1, pp. 26-29, 1995. |
[95] | H.J. Peifer, B. Meinerzhagen, R. Thoma and W.L. Engl, “Evaluation of impact ionization modeling in the framework of hydrodynamic equations,” IEDM Tech. Digest, 1991. |
[96] | T. Grasser, H. Kosina and S. Selberherr, “Influence of the distribution function shape and band Structure, on impact ionization modelling,” J. Appl. Phys. vol. 90, no. 12, pp. 6165-6171, 2001. |
[97] | K. Sonoda, S. T. Dunham, M. Yamaji, K. Taniguchi and C. Hamaguchi, “Impact ionization model using average energy and average square energy distribution,” Japan. J. Appl. Phys., vol. 35, no. 2B, pp. 818-825, 1996. |
[98] | T. Grasser, H. Kosina, C. Heitzinger and S. Selberherr, “An impact ionization model including an explicit cold carrier population,” Modelling and Simulation of Microsystems, ISBN 0-9708275-7-1, 2002. |
[99] | H. C. Morris, M. M De Pass and Henok Abebe, "Analytic formulae for the impact ionization rate for use in compact models of ultra-short semiconductor devices." Proceedings Nanotechnology Conference, vol. 2, pp140-143, Boston, Massachusetts, USA, 2004. |
[100] | P. G. Scrobhaci and T.-W. Tang, “Modeling of the hot electron subpopulation and its application to impact ionization in submicron silicon devices- PART I: Transport equations,” IEEE Trans. Electron Devices, vol. 41, no.7, p.1197, 1994. |
[101] | C.S. Yao, J.G. Ahn, Y.-J. Park, H.-S. Min and R.W. Dutton, Formulation of a tail electron hydrodynamic model based on Monte Carlo results,” IEEE Electron Devices Lett., vol. 16, no. 1, p. 26, 1995. |
[102] | T.-W. Tang and J. Nam, “A simplified impact ionization model on the average energy of hot-electron subpopulation,” IEEE Electron Devices Lett., vol. 19, no. 6, 1998. |
[103] | M. H. El-Saba, “Accurate hydrodynamic modeling of impact ionization rate in semiconductor devices,” Int. Conf. on Radio Science, URSI, Cairo, 1998. |
[104] | K. K. Thornber, “Application of scaling to problems in high-field electronic transport,” J. Appl. Phys., vol. 52, no. 1, pp. 279-290, 1981. |
[105] | J. Bude and K. Hess, “Threshold of impact ionization in semiconductors,” J. Appl. Phys. vol. 72, no. 8, 1992. |
[106] | J. Tang, “Theoretical studies of high field transport in GaAs, Si and heterostructures,” PhD Dissertation, Univ. of Illinois, Urbana, 1983. |
[107] | C. Crowell and S. M. Sze, “Temperature dependence of avalanche multiplication in semiconductors,” Appl. Phys. Lett., vol. 9, no. 6, p. 242, 1966.. |
[108] | R. A. Ballinger, K.G. Major and J.R. Mallinson, “Impact ionization thresholds in semiconductors,” J. Phys. C: Solid-state Phys., vol. 6, pp. 2573-2585, 1973. |
[109] | Ken Kai-fu Chang, Kajen R. S., Shen Chen, Ping Bai, Ganesh Samudra and Erping Li, “Investigation on the Impact Ionization Breakdown Onset of Double-Gate MOSFET structure with Optimized Hydrodynamic Model via Full-band Monte Carlo Method,” IEEE Trans. Vol. 46, No. 2, pp. 221-231, 2008. |
[110] | K. Hess, “Comment on effect of collisional broadening on Monte Carlo simulation of high-field transportin in semiconductor devices,” IEEE Electron Devices Lett., Vol EDL-2, pp.297-298, 1989. |
[111] | F. R. McFeely, E. Cartier and E. Eklund, “New zero-field probes for the transport dynamics of very hot electrons,” Proceedings of NASECODE VIII, J.J. Miller (Ed.), Vienna, Austria, pp.42-43, 1992. |
[112] | W. Quade and Eckehard Scholl, F. Rossi, C. Jacoboni, “Quantum theory of impact ionization in coherent high-field semiconductor transport,” The American Physical Society, April 1994 |
[113] | G. Wolodkin and J. Frey, “Overshoot effects in the relaxation time approximation,” Proceedingings NASCODE 8, Vienna, 1992, pp. 107-108. |
[114] | C. Jacoboni and L. Reggiani, “Bulk hot-electron properties of cubic semiconductors,'' Advanced in Physics, vol. 28, pp. 493-553, 1983. |
[115] | K. Seeger, Semiconductor Physics, Springer Verlag, 1973. |
[116] | M. Costato and L. Reggiani, “Electron energy relaxation time in Si and Ge,” J. Phys. Chem. Solide, vol. 34, pp.547-564, 1973. |
[117] | B. Gonzalez et al., “An analytical Energy relaxation time model for device simulation,” Solid-State Electron., vol. 43, 1999. |
[118] | D. Munteanu, G. Le Carval and G. Guegan, “Impact of non-stationary transport effects on realistic 50nm MOS technology,” Modelling and Simulation of Microsyatems, 2001. |
[119] | K. Suzuki, K. Saito, K. Muraki and Y. Hirayama, "Photoluminescence from a modulation-doped Al0.33Ga0.67As/GaAs heterointerface under cyclotron resonance" Phys. Rev., vol. B58, p.15385, 1998. |
[120] | D. M. Rife, J. Optical Soc. America, vol. B 19, p.1092, 2002. |
[121] | A. J. Sabbah and D. M. Riffe, “Femtosecond pump-probe reflectivity study of silicon carrier dynamics,” Phys. Rev. B, vol. 66, pp. 165217-165228, 2002. |
[122] | A. Matulionis, J. Liberis, L. Eastman, W. Schaff, J. Shealy, X. Chen and Y.-J. Sun, “Electron transport and microwave Noise in MBE-and MOCVD-Grown AlGaN/AIN/GaN.” Acta Physica Polonica A, vol. 107, pp. 361-364, 2005. |
[123] | I. Bork, C. Jungemann, B. Meinerzhagen, W. L. Engl, "Influence of heat flux on the accuracy of hydrodynamic models for ultrashort Si MOSFETs," in NUPAD Tech. Dig., Honolulu, 1994. |
[124] | M. Ieong and T-W. Tang, “Influence of hydrodynamic models on the prediction of submicrometer device characteristics,” IEEE Trans. Electron Devices, vol. ED-44, no. 12, 1997. |
[125] | M. H. El-Saba, "Problems related to the hydrodynamic model", Proceedings of the 5th Int. Conference on Microelectronics ICM VI, Cairo, 1995. |
[126] | K. Hasnat, C-F. Yeap, S. Jallepalli, S. A. Hareland, W.K. Shih, V.M. Agostinelli, A.F. tasch and C. M. Maziar, “Thermoionic emission model of electron gate current in submicron NMOSFETs,” IEEE Trans. Electron Devices, vol, 44, no. 1, pp. 129-138, 1997. |
[127] | A. Gehring, T. Grasser, and S. Selberherr, “Non-parabolicity and non-Maxwellian effects on gate oxide tunneling, The NSTI Nanotech. Conf. Proceedings, Boston, 2003. |
[128] | M. Rasras, I. De Wolf, G. Groeseneken, Ben Kaczer, R. Degraeve and H.E. Maes, “Photo-carrier generation as the origin of Fowler-Nordheim-induced substrate hole current in thin oxides,” IEEE Trans. Electron Devices, vol. 48, no. 2, pp. 231-238, 2001. |
[129] | T. H. Ning, C. M. Osburn, and H. N. Yu. Emission probability of hot electrons from silicon into silicon dioxide. J. Appl. Phys., vol. 48, pp. 286–293, 1977. |
[130] | C. Hu, S. Tam, F. Hsu, P. Ko, T. Chan, and K. Terill, “Hot-electron-induced MOSFET degradation—Model, monitor and improvement,” IEEE Trans. Electron Devices, vol. 32, no.2, p. 375-384, 1985. |
[131] | J. D. Bude, “Gate current by impact ionization feedback in sub-micron MOSFET technologies, “ in Proc. Symp. VLSI Tech., 1995, pp. 101-102. |
[132] | D. R. Nair, S. Shukuri and S. Mahapatra, “Cycling endurance of NOR flash EEPROM cells under CHISEL programming operation—Impact of technology parameters and scaling,” IEEE Trans. Electron devices, vol. 51, no. 10, pp. 1672-1678, 2004. |
[133] | J. Egley, B. Polsky, B. Min, E. Lyumkis, O. Penzin, and M. Foisy, “SOI related simulation challenges with moment-based BTE solvers,” Simulation of Semiconductor Processes and Devices, Seattle, Washington, USA, pp. 241–244, Sept. 2000. |
[134] | M. Gritsch, H. Kosina, T. Grasser, S. Selberherr, T. Linton, S. Singh, S. Yu, and M.D. Giles, “The failure of the hydrodynamic transport model for simulation of partially depleted SOI MOSFETs and its revision,” in SIO Technology and Devices X, (Washington DC, USA), pp. 181–186, 2001. |
[135] | E. Pop, K. Banerjee, Per Sverdrup, R. Dutton and K. Goodson, “Localized heating effects and scaling of Sub-0.18 micron CMOS devices,” Int. Electron Devices Meeting (IEDM), 2002. |
[136] | M. Cardona, Fundamentals of Semiconductors, Springer-Verlag, Berlin, 1996. |
[137] | M-Y Chuang and M. E. Law, "A new algorithm for faster full-thermodynamic device simulations," IEEE Trans. Electron Devices, vol. 44, no. 9, 1997. |
[138] | C. Kittle, Introduction to Solid-State Physics, New York, Wiley & Sons, 1967. |
[139] | A. Chryssafis and W.A. Love, “Computer-aided analysis of one-dimensional thermal transients in n-p-n Power transistors,” Solid-state Electron. vol. 22, pp. 249-256, 1979. |
[140] | J. C. Glassbenner and G.A. Slack, “Thermal conductivity of silicon and germanium from 3K to the melting point,” Phys. Rev. A, vol. 134, pp. 1058-1069, 1964. |
[141] | P. Su, K-I. Goto, T. Sugii, and C. Hu, “A thermal activation view of low voltage impact ionization in MOSFETs,” IEEE Electron Devices letters, vol. 23, no. 9, pp.550- 552, 2002. |
[142] | M. Asheghi, Touzelbaev, M.N., K.E. Goodson, Y.K.Leung and S.S.Wong, "Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates," ASME Journal of Heat Transfer, vol. 120, pp. 31-36, 1998. |
[143] | P. G. Sverdrup, O. Tornblad, K. Banerjee, D. Yergeau, Z. Yu, R. W. Dutton and K. E. Goodson, “Advanced electro-thermal modeling and simulation Techniques for deep Submicron devices,” Techcon, 2000. |
[144] | D. A. Romanov, B. A. Glavin, and V. V. Mitin, “Stimulated decay of non-selectively pumped optical phonons in GaAs,” Phys. Rev. B vol. 60, no. 7, 1999. |
[145] | C. Gardner, “The quantum hydrodynamic model for semiconductor devices,” SIAM Journal on Applied Mathematics, vol. 54, pp. 409–427, 1994. |
[146] | D. Ferry, H. Grubin, “Modelling of quantum transport in semiconductor devices,” Solid State Phys. 49 , pp.283–448, 1995. |
[147] | I. Burghardt, S. Lorenz, S. Cederbaum, K. B. Moller, G. Parlant, Hydrodynamic methods for ultrafast quantum dynamics, quantum transport, and dissipation, [online]. Available: http://mail.math.ups-tlse.fr/~nanolab/Contents/Invited2.pdf , 2004. |
[148] | E. Madelung, “Quantentheorie in hydrodynamischer form,” Z. Physik, vol. 40, pp.322-326, 1927. |
[149] | Ansgar J.ungel and D. Matthes1, “A derivation of the isothermal quantum hydrodynamic equations using entropy minimization,” Appl. Numer. Math, 2005. |
[150] | D. Ferry and J.-R. Zhou, “Form of the quantum potential for use in hydrodynamic equations for semiconductor device modeling,” Phys. Rev. B, vol. 48, pp. 7944-7950, 1993. |
[151] | C. Gardner and C. Ringhofer, “The smooth quantum potential for the hydrodynamic Model,” Phys. Rev. vol. E 53 , pp.157-167, 1996. |
[152] | C.S. Rafferty et al., “Multi-dimensional quantum effect simulation using a density-gradient model and script-level programming techniques,” SISPAD’98, Leuven, Belgium, Sept., 1998, p.137. |
[153] | D. Connelly, Z. Yu and D. Yergeau, “Macroscopic simulation of quantum mechanical effects in 2-D MOS devices via the density gradient method,” IEEE Trans. vol. 49, no. 4, pp. 619-626, 2002. |
[154] | H.U. Baranger and J.W. Wilkins, “Ballistic structure in the electron distribution function of small semiconducting structures: General features and specific trends,” Phys. Rev. B, vol. 36, pp.1487-1502, 1987. |
[155] | M.S. Lundstrom, “Elementary scattering theory of the MOSFET,” IEEE Electron Dev. Lett., vol. 18, pp.361-363, 1997. |
[156] | M. Lundstrom and Zhibin Ren, “Essential physics of carrier transport in nanoscale MOSFETs,” IEEE Trans. Electron Devices, vol. 49, no. 1, 2002. |
[157] | K. Banoo, J.-H. Rhew, M. Lundstrom, C.-W Shu and J. W. Jerome, “Simulating quasi-ballistic transport in Si nanotransistors,” 7th Int. Workshop Computational Electronics, IWCE, July, 2000. |
[158] | W. C. Leonard, F. Register and S.K. Banerjee, Simulation of quantum effects along the channel of ultrathin Si-based MOSFETs,” IEEE Trans. vol. 49, no. 4, pp. 652-657, 2002 |
[159] | A. Svizhenko and M.P. Arantvan, “Role of scattering in nanotransistors,” IEEE Trans. Vol. 50, no. 6, pp. 1459-1466, 2003. |
[160] | M. H. El-Saba, “Investigation of the hot carriers rebelling effect in semiconductor devices, Using an Analytical Solution of the Hydrodynamic Model,” IEEE Trans. Electron Devices, vol. 52, no. 7, pp. 1561-1568, 2006. |
[161] | Shiyu Chen, Kunyuan Xu, and Gang Wang , "Monte Carlo Investigation of Size-Dependent Impact Ionization Properties in InP Under Submicron Scale, Journal of Lightwave Technology, Vol. 27, Issue 10, pp. 1347-1354, 2009. |