[1] | C. Lee, S.Y. No, D.I. Eom, C.S. Hwang, H.J. Kim, "The electrical and physical analysis of Pt gate/Al2O3/p-Si (100) with dual high-k gate oxide thickness for deep submicron complementary metal-oxide-semiconductor device with low power and high reliability", Springer, Journal of Electronic Materials, Vol. 34, pp. 1104-1109, 2005. |
[2] | R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, M. Metz,"High-k/metal-gate stack and its MOSFETcharacteristics", IEEE-INST ELECTRICALELECTRONICS ENGINEERS INC, IEEE, Electron Device Letters, Vol. 25, pp. 408-410, 2004. |
[3] | Y. Song, H. Zhou, Q. Xu, J. Luo, H. Yin, J. Yan, H. Zhong, "Mobility Enhancement Technology for Scaling of CMOS Devices: Overview and Status", Springer, Journal of Electronic Materials, pp. 1-29, 2011. |
[4] | G. Lansbergen, R. Rahman, C. Wellard, I. Woo, J. Caro, N. Collaert, S. Biesemans, G. Klimeck, L. Hollenberg, S. Rogge, "Gate-induced quantum-confinement transition of a single dopant atom in a silicon FinFET", NATURE PUBLISHING GROUP, Nature Physics, Vol. 4, pp. 656-661, 2008. |
[5] | J. Colinge, "Multi-gate SOI MOSFETs", ELSEVIER SCIENCE BV, Microelectronic engineering, Vol. 84, pp. 2071-2076, 2007. |
[6] | Y. Li, H.M. Chou, J.W. Lee, "Investigation of electrical characteristics on surrounding-gate and omega-shaped-gate nanowire FinFETs", IEEE-INST ELECTRICALELECTRONICS ENGINEERS INC, IEEE Transactions on Nanotechnology, Vol. 4, pp. 510-516, 2005. |
[7] | B. Yang, K. Buddharaju, S. Teo, N. Singh, G. Lo, D. Kwong, "Vertical silicon-nanowire formation and gate-all-around MOSFET", IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, IEEE, Electron Device Letters, Vol. 29, pp. 791-794, 2008. |
[8] | C. Srinivasan, M. Anderson, E. Carter, J. Hohman, S. Bharadwaja, S. Trolier-McKinstry, P. Weiss, M. Horn, "Extensions of molecular ruler technology for nanoscale patterning", A V S AMER INST PHYSICS, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 24, pp 3200, 2006. |
[9] | Y.H. Wang, C.A. Mirkin, S.J. Park, "Nanofabrication beyond electronics", AMER CHEMICAL SOC, ACS nano, Vol. 3, pp. 1049-1056, 2009. |
[10] | S. Lee, J. Kim, W.S. Shin, H.J. Lee, S. Koo, H. Lee, "Fabrication of nanostructures using scanning probe microscope lithography", ELSEVIER SCIENCE BV, Materials Science and Engineering: C, Vol. 24, pp. 3-9, 2004. |
[11] | D. Sheglov, A. Latyshev, A. Aseev,"The deepness enhancing of an AFM-tip induced surface nanomodification", ELSEVIER SCIENCE BV, Applied surface science, Vol. 243, pp. 138-142, 2005. |
[12] | C.H. Choi, D.J. Lee, J.H. Sung, M.W. Lee, S.G. Lee, S.G. Park, E.H. Lee, "A study of AFM-based scratch process on polycarbonate surface and grating application", ELSEVIER SCIENCE BV, Applied surface science, Vol. 256, pp. 7668-7671, 2010. |
[13] | S. Xu, S. Miller, P.E. Laibinis, G. Liu, "Fabrication of nanometer scale patterns within self-assembled monolayers by nanografting", AMER CHEMICAL SOC, Langmuir, Vol. 15, pp. 7244-7251, 1999. |
[14] | D. Roy, M. Munz, P. Colombi, S. Bhattacharyya, J.P. Salvetat, P. Cumpson, M.L. Saboungi, "Directly writing with nanoparticles at the nanoscale using dip-pen nanolithography", ELSEVIER SCIENCE BV, Applied surface science, Vol. 254, pp. 1394-1398, 2007. |
[15] | J. Cervenka, R. Kalousek, M. Bartosik, D. Skoda, O. Tomanec, T. Sikola, "Fabrication of nanostructures on Si (1 0 0) and GaAs (1 0 0) by local anodic oxidation", ELSEVIER SCIENCE BV, Applied surface science, Vol. 253, pp. 2373-2378, 2006. |
[16] | P. Campbell, E. Snow, P. McMarr, "Fabrication of nanometer scale side gated silicon field effect transistors with an atomic force microscope", AMER INST PHYSICS, Applied Physics Letters, Vol. 66, pp. 1388, 1995. |
[17] | E. Snow, P. Campbell, P. McMarr, "Fabrication of silicon nanostructures with a scanning tunneling microscope", AMER INST PHYSICS, Applied Physics Letters, Vol. 63, pp. 749-751, 1993. |
[18] | I. Ionica, L. Montes, S. Ferraton, J. Zimmermann, L. Saminadayar, V. Bouchiat, "Field effect and Coulomb blockade in silicon on insulator nanostructures fabricated by atomic force microscope", PERGAMON-ELSEVIER SCIENCE LTD, Solid-State Electronics, Vol. 49, pp. 1497-1503, 2005. |
[19] | G. Pennelli, "Top down fabrication of long silicon nanowire devices by means of lateral oxidation", ELSEVIER SCIENCE BV, Microelectronic engineering, Vol. 86, pp. 2139-2143, 2009. |
[20] | J. Martinez, R.V. Martínez, R. Garcia, "Silicon nanowire transistors with a channel width of 4 nm fabricated by atomic force microscope nanolithography", AMER CHEMICAL SOC, Nano Letters, Vol. 8, pp. 3636-3639, 2008. |
[21] | Y. Shan, S. Ashok, S.J. Fonash, "Unipolar accumulation-type transistor configuration implemented using Si nanowires", AMER INST PHYSICS, Applied Physics Letters, Vol. 91, pp. 093513-093518, 2007 |
[22] | J.P. Colinge, C.W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O'Neill, A. Blake, M. White, "Nanowire transistors without junctions", NATURE PUBLISHING GROUP, Nature Nanotechnology, Vol. 5, pp. 225-229, 2010. |
[23] | A. Dehzangi, F. Larki, E. Saion, S.D. Hutagalung, M. Hamidon, J. Hassan," Field effect in silicon nanostructure fabricated by Atomic Force Microscopy nano lithography", in Proceedings of 2011 IEEE Regional Symposium on Micro and Nano Electronics, pp. 104-107, 2011. |
[24] | P.T.F. SOITEC, 38190 Bernin, France, in. |
[25] | W. Kern, Handbook of semiconductor wafer cleaning technology: science, technology, and applications, Noyes Pubns, 1993. |
[26] | D. Stievenard, P. Fontaine, E. Dubois,"Nanooxidation using a scanning probe microscope: An analytical model based on field induced oxidation", AMER INST PHYSICS, Applied Physics Letters, Vol. 70, pp. 3272, 1997. |
[27] | I. Zubel, M. Kramkowska, "Etch rates and morphology of silicon (hkl) surfaces etched in KOH and KOH saturated with isopropanol solutions", ELSEVIER SCIENCE BV, Sensors and Actuators A: Physical, Vol. 115, pp. 549-556, 2004. |
[28] | N. Clement, D. Tonneau, H. Dallaporta, V. Bouchiat, D. Fraboulet, D. Mariole, J. Gautier, V. Safarov,"Electronic transport properties of single-crystal silicon nanowires fabricated using an atomic force microscope", ELSEVIER SCIENCE BV, Physica E: Low-dimensional Systems and Nanostructures, Vol. 13, pp. 999-1002, 2002. |
[29] | V. Bouchiat, M. Faucher, T. Fournier, B. Pannetier, C. Thirion, W. Wernsdorfer, N. Clement, D. Tonneau, H. Dallaporta, S. Safarov, "Resistless patterning of quantum nanostructures by local anodization with an atomic force microscope", ELSEVIER SCIENCE BV, Microelectronic engineering, Vol. 61, pp. 517-522, 2002. |
[30] | S.M. Sze, Semiconductor devices: physics and technology, Wiley-India, 2009. |
[31] | J.P. Raskin, J.P. Colinge, I. Ferain, A. Kranti, C.W. Lee, N.D. Akhavan, R. Yan, P. Razavi, R. Yu, Mobility improvement in nanowire junctionless transistors by uniaxial strain, AMER INST PHYSICS, Applied Physics Letters, Vol. 97, pp. 042114, 2010. |
[32] | J. Colinge, C. Lee, N. Dehdashti Akhavan, R. Yan, I. Ferain, P. Razavi, A. Kranti, R. Yu, Junctionless Transistors: Physics and Properties, Semiconductor-On-Insulator Materials for Nanoelectronics Applications, Springer, Verlag Berlin Heidelberg, 2011. |
[33] | L. Ansari, B. Feldman, G. Fagas, J.P. Colinge, J.C. Greer, Simulation of junctionless Si nanowire transistors with 3 nm gate length, AMER INST PHYSICS, Applied Physics Letters, Vol. 97, pp. 062105, 2010. |
[34] | D. Sels, B. Sorée, G. Groeseneken, Quantum ballistic transport in the junctionless nanowire pinch-off field effect transistor, Springer, Journal of computational electronics, pp. 1-6, 2011. |
[35] | C.W. Lee, D. Lederer, A. Afzalian, R. Yan, N.D. Akhavan, J.P. Colinge, Analytical model for the high-temperature behaviour of the subthreshold slope in MuGFETs, ELSEVIER SCIENCE BV, Microelectronic engineering, vol. 86, pp. 2067-2071, 2009. |
[36] | H. Hovel, Si film electrical characterization in SOI substrates by the HgFET technique, PERGAMON-ELSEVIER SCIENCE LTD, Solid-State Electronics, vol. 47, pp. 1311-1333 2003. |