Marine Science
p-ISSN: 2163-2421 e-ISSN: 2163-243X
2012; 2(6): 132-138
doi: 10.5923/j.ms.20120206.04
Hossam Ahmad 1, Bernd Sumpf 2, Kay Sowoidnich 1, Andreas Klehr 2, Heinz-Detlef Kronfeldt 1
1Technische Universität Berlin, Institut für Optik und Atomare Physik, Sekr. EW 0-1, Hardenbergstraße, 36, 10623, Berlin, Germany
2Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Optoelectronics Department, Gustav-Kirchhoff-Str. 4, 12489, Berlin, Germany
Correspondence to: Hossam Ahmad , Technische Universität Berlin, Institut für Optik und Atomare Physik, Sekr. EW 0-1, Hardenbergstraße, 36, 10623, Berlin, Germany.
Email: |
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved.
A laboratory Raman-set-up is used to demonstrate the feasibility of deep ocean measurements using 1000 m long low OH optical fibres for the excitation of the substances under study and the collection of the Raman photons. As excitation laser a 785 nm broad area distributed feedback (DFB-BA) high-power diode laser with an optical power of 1.25 W and a spectral emission width below 0.6 nm suitable for Raman spectroscopy was used.After passing beam shaping and focusing optics, a 1000 m long fiber, and a pressure-resistant optode275 mW of optical power were available at the sample. The optode also collects the Raman photons and focuses the light into the second 1000 m long fibre, which transfers the light into a spectrometer. To determine the reachable signal-to-noise ratio, Raman spectra were taken from natural minerals (sulfates, carbonates, sulfur). Even for weak Raman-signal and short integration times of 0.5 s per spectrum, the signal-to-noise ratio of 60 would be suitable for the in-situ Raman spectroscopy in deep ocean applications. Even longer optical fibres would increase to integration time up to 60 s. The shown set-up offers the opportunity to used different laser sources and spectrometers on board of a ship, only the fibres and the optode had to be suitable for deep sea conditions.
Keywords: In-Situ Raman Spectroscopy, High Power Broad Area DFB Diode Laser, Long Low OH Optical Fiber, Deep Ocean, Natural Minerals
Cite this paper: Hossam Ahmad , Bernd Sumpf , Kay Sowoidnich , Andreas Klehr , Heinz-Detlef Kronfeldt , "Insitu Raman Setup for Deep Ocean Investigations Applying Two 1000 m Optical Fiber Cables and a 785 nm High Power Diode Laser", Marine Science, Vol. 2 No. 6, 2012, pp. 132-138. doi: 10.5923/j.ms.20120206.04.
Figure 1. Optical power-current and voltage-current characteristic of the BA DFB diode laser at 25℃ |
Figure 2. Optical spectra versus injection current of the BA DFB diode laser at T = 25℃ |
Figure 3. Lateral near field (top) and far field (bottom) profiles at T = 25℃ and optical output powers of 1000 mW and 1250 mW |
Figure 4. Raman signal of the 1000 m optical fiber cable without using a bandpass filter (BPF) (a) and with using a BPF (b |
Figure 6. Anhydrite Raman spectra: (A) raw data and baseline correction curve (dotted line), (B) baseline corrected spectrum |
Figure 7. Raman spectra of anhydrite (top), gypsum (center) and barite (bottom), 275 mW optical power at the sample, 0.5 s integration time, average of 10 spectra each, the anhydrite sample shows several luminescence bands above 1200 cm-1; gypsum spectrum shifted by 28000 counts and anhydrite spectrum shifted by 55000 counts for clarity |
Figure 8. Raman spectra of aragonite (top) and calcite (bottom), 275 mW optical power at the sample, 0.5 s integration time, average of 10 spectra each, aragonite spectrum shifted by 38000 counts for clarity |
Figure 9. Raman spectrum of sulfur, 275 mW optical power at the sample, 0.5 s integration time, average of 10 spectra |
[1] | P.Brewer, G.Malby, J.Pasteris, S.White, E.Peltzer, B.Wopenka, J.Freemann, M. Brown, "Development of a Laser Raman Spectrometer for Deep-Ocean Science", Elsevier, Deep Sea Research Part I: Oceanographic Research Papers, vol.51, no.5, pp.739-753, 2004. |
[2] | K. C.Hester, R. M. Dunk, S. N. White, P. G. Brewer, E. T. Peltzer, E. D.Sloan, "Gas Hydrate Measurements at Hydrate Ridge Using Raman Spectroscopy", Elsevier, Geochimica et CosmochimicaActa, vol.71, no.12, pp.2947-2959, 2007. |
[3] | S.N. White, R.M. Dunk, E.T. Peltzer, J.J. Freeman, and P.G.Brewer, "In Situ Raman Analyses of Deep-Sea Hydrothermal and Cold Seep Systems(Gorda Ridge and Hydrate Ridge)", American Geophysical Union, Geochemistry, Geophysics, Geosystems, vol.7, Q05023, doi:10.1029/2005GC001204, 2006. |
[4] | S. N. White, "Laser Raman Spectroscopy as a Technique for Identification of Seafloor Hydrothermal and Cold Seep Minerals", Elsevier, Chemical Geology, vol.259, no.3-4, pp.240-252, 2009. |
[5] | X. Zhang, P.M. Walz, W.J. Kirkwood, K.C. Hester, W. Ussler, E.T. Peltzer, P.G.Brewer, "Development and Deployment of a Deep-Sea Raman Probe for Measurement of Pore Water Geochemistry",Elsevier,Deep Sea Research Part I:Oceanographic Research Papers, vol.57, no.2, pp.297-306, 2010. |
[6] | R. L. McCreery, M.Fleischmann, P. Hendra, "Fiber Optic Probe for Remote Raman Spectrometry",American Chemical Society,Analytical Chemistry, vol.55,no.1, pp.146-148, 1983. |
[7] | S. D. Schwab, R. L. McCreery, "Versatile, Efficient Raman Sampling with Fiber Optics", American Chemical Society, Analytical Chemistry, vol.56, no.12, pp.2199-2204, 1984. |
[8] | C. K. Chong, C. Shen, Y. Fong, J. Zhu, F.X. Yan, S. Brush, C. K. Mann, T. J.Vickers, "Raman Spectroscopy with a Fiber-Optic Probe",Elsevier, Vibrational Spectroscopy, vol.3, no.1, pp.35-45, 1992. |
[9] | M. L. Myrick, S. M. Angel, "Elimination of Background in Fiber-Optic Raman Measurements",Society for Applied Spectroscopy, Applied Spectroscopy, vol.44, no.4, pp.565-570, 1990. |
[10] | C. L. Schoen, T. F. Cooney, S. K. Sharma, D. M.Carey, "Long Fiber-Optic Remote Raman Probe for Detection and Identification of Weak Scatterers",Optical Society of America,Applied Optics, vol.31,no.36, pp.7707-7715, 1992. |
[11] | B. Schrader, A.Hoffman, S.Keller, "Near-Infrared Fourier transform Raman Spectroscopy: Facing Absorption and Background",Elsevier, SpectrochimicaActa Part A: Molecular Spectroscopy, vol.47, no.9-10, pp.1135-1148, 1991. |
[12] | H. Wenzel, A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, M.Weyers, G.Tränkle, "High-Power 783 nm Distributed-Feedback Laser",Institution of Engineering and Technology,Electronics Letters, vol.40, no.2, pp.123-124, 2004. |
[13] | M. Maiwald, A. Klehr, B. Sumpf, H. Wenzel, T. Laurent, J. Wiedmann, H.Schmidt and H. D.Kronfeldt, "Reliable Operation of 785 nm DFB Diode Lasers for Rapid Raman Spectroscopy",in Proceedings of 2007 SPIE Conference on High-Power Diode Laser Technology and Applications V, pp.64560W-1-64560W-6, 2007. |
[14] | R. L. McCreery, Raman Spectroscopy for Chemica1 Analysis, 1st ed.,John Wiley & Sons, USA, 2000. |
[15] | Online Available:http://www.leoni-fiber-optics.com/Transmission-Tool.11883.0.html |
[16] | B.Eppich, "Optical Design of Beam Delivery and Beamforming System"John Wiley & Sons, Optik&Photonik, vol.3, no.2, pp.48-51, 2008. |
[17] | H. Schmidt, T. Murphy, S. Lucht and H. D.Kronfeldt, "Development of a SERS optode for the in-situ detection of chemicals in sea water", inProceedings of 1999 SPIE Conference on Environmental Monitoring and Remediation Technologies II, pp. 356-363, 1999. |
[18] | C. D. Taylor, C. O.Wirsen, "Microbiology and Ecology of Filamentous Sulfur Formation",American Association for the Advancement of Science,Science, vol.277, no.5331, pp.1483-1485, 1997. |
[19] | A. S. Marfunin, Spectroscopy, Luminescence and Radiation Centers in Minerals, 1st ed., Springer, Germany, 1979. |
[20] | J. D. Stopar, P. G. Lucey, S. K. Sharma, A. K. Misra, G. J. Taylor, H. W.Hubble, "Raman Efficiencies of Natural Rocks and Minerals: Performance of a Remote Raman System for Planetary Exploration at a Distance of 10 Meters",Elsevier, SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy, vol.61, no.10, pp.2315-2323, 2005. |
[21] | J. S. Urmos, K. Sharma, F. T. Mackenzie, "Characterization of Some Biogenic Carbonates with Raman Spectroscopy", Mineralogical Society of America, American Mineralogist, vol.76,no.3-4, pp.641-646, 1991. |