| [1] | A.M. Rabie, M. Abdalla, Forodesine and Riboprine Exhibit Strong Anti-SARS-CoV-2 Repurposing Potential: In Silico and In Vitro Studies, ACS Bio Med Chem Au. 2 (2022) 565–585. https://doi.org/10.1021/ACSBIOMEDCHEMAU.2C00039. |
| [2] | W.A. Eltayb, M. Abdalla, A.M. Rabie, Novel Investigational Anti-SARS-CoV-2 Agent Ensitrelvir “S-217622”: A Very Promising Potential Universal Broad-Spectrum Antiviral at the Therapeutic Frontline of Coronavirus Species, ACS Omega. 8 (2023) 5234–5246. https://doi.org/10.1021/ACSOMEGA.2C03881. |
| [3] | A.M. Rabie, Two antioxidant 2,5-disubstituted-1,3,4-oxadiazoles (CoViTris2020 and ChloViD2020): successful repurposing against COVID-19 as the first potent multitarget anti-SARS-CoV-2 drugs, New J. Chem. 45 (2021) 761–771. https://doi.org/10.1039/D0NJ03708G. |
| [4] | A.M. Rabie, Teriflunomide: A possible effective drug for the comprehensive treatment of COVID-19, Curr. Res. Pharmacol. Drug Discov. 2 (2021) 100055. https://doi.org/10.1016/J.CRPHAR.2021.100055. |
| [5] | A.M. Rabie, W.A. Eltayb, Potent Dual Polymerase/Exonuclease Inhibitory Activities of Antioxidant Aminothiadiazoles Against the COVID-19 Omicron Virus: A Promising In Silico/In Vitro Repositioning Research Study, Mol. Biotechnol. 66 (2024) 592–611. https://doi.org/10.1007/S12033-022-00551-8/TABLES/3. |
| [6] | A.M. Rabie, M. Abdalla, Evaluation of a series of nucleoside analogs as effective anticoronaviral-2 drugs against the Omicron-B.1.1.529/BA.2 subvariant: A repurposing research study, Med. Chem. Res. 32 (2023) 326–341. https://doi.org/10.1007/S00044-022-02970-3/FIGURES/6. |
| [7] | A.M. Rabie, Efficacious Preclinical Repurposing of the Nucleoside Analogue Didanosine against COVID-19 Polymerase and Exonuclease, ACS Omega. 7 (2022) 21385–21396. https://doi.org/10.1021/ACSOMEGA.1C07095. |
| [8] | A. Barapatre, K.R. Aadil, H. Jha, Synergistic antibacterial and antibiofilm activity of silver nanoparticles biosynthesized by lignin-degrading fungus, Bioresour. Bioprocess. 3 (2016) 1–13. https://doi.org/10.1186/s40643-016-0083-y. |
| [9] | K.S. Siddiqi, A. Husen, R.A.K. Rao, A review on biosynthesis of silver nanoparticles and their biocidal properties, J. Nanobiotechnology. 16 (2018) 1–28. https://doi.org/10.1186/s12951-018-0334-5. |
| [10] | S. Anees Ahmad, S. Sachi Das, A. Khatoon, M. Tahir Ansari, M. Afzal, M. Saquib Hasnain, A. Kumar Nayak, Bactericidal activity of silver nanoparticles: A mechanistic review, Mater. Sci. Energy Technol. 3 (2020) 756–769. https://doi.org/10.1016/j.mset.2020.09.002. |
| [11] | N. Chandrasekhar, S.P. Vinay, Yellow colored blooms of argemone mexicana and turnera ulmifolia mediated synthesis of silver nanoparticles and study of their antibacterial and antioxidant activity, Appl. Nanosci. 7 (2017) 851–861. https://doi.org/10.1007/s13204-017-0624-5. |
| [12] | C.O. Bamigboye, J.A. Amao, I.A. Fadiora, J.D. Adegboye, O.E. Akinola, A.A. Alarape, O.R. Oyeleke, E.A. Adebayo, Antioxidant and antimicrobial activities of nanosilver-mycomeat composite produced through solid state fermentation of tigernut waste and cassava pulp by Pleurotus pulmonarius, IOP Conf. Ser. Mater. Sci. Eng. 805 (2020) 012011. https://doi.org/10.1088/1757-899X/805/1/012011. |
| [13] | J.C.S. Costa, P. Corio, L.M. Rossi, Catalytic oxidation of cinnamyl alcohol using Au-Ag nanotubes investigated by surface-enhanced Raman spectroscopy., Nanoscale. 7 (2015) 8536–43. https://doi.org/10.1039/c5nr01064k. |
| [14] | G. Herrera, A. Padilla, S. Hernandez-Rivera, Surface Enhanced Raman Scattering (SERS) Studies of Gold and Silver Nanoparticles Prepared by Laser Ablation, Nanomaterials. 3 (2013) 158–172. https://doi.org/10.3390/nano3010158. |
| [15] | B. Ankudze, A. Philip, T.T. Pakkanen, Controlled synthesis of high yield polyhedral polyethylenimine-capped gold nanoparticles for real-time reaction monitoring by SERS, Sensors Actuators B Chem. 265 (2018) 668–674. https://doi.org/10.1016/J.SNB.2018.03.088. |
| [16] | F. Jelin, S. Selva Kumar, M. Malini, M. Vanaja, G. Annadurai, Environmental-Assisted green approach AgNPs by nutmeg (Myristica fragrans): Inhibition potential accustomed to pharmaceuticals, Eur. J. Biomed. Pharm. Sci. 2 (2015) 258–274. |
| [17] | E. Vatandost, F. Chekin, S.A. Shahidi Yasaghi, Green synthesis of silver nanoparticles by pepper extracts reduction and its electocatalytic and antibacterial activity, Russ. J. Electrochem. 2016 5210. 52 (2016) 960–965. https://doi.org/10.1134/S102319351610013X. |
| [18] | P. Khanna, A. Kaur, D. Goyal, Algae-based metallic nanoparticles: Synthesis, characterization and applications, J. Microbiol. Methods. 163 (2019) 105656. https://doi.org/10.1016/J.MIMET.2019.105656. |
| [19] | M. Gajbhiye, J. Kesharwani, A. Ingle, A. Gade, M. Rai, Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole, Nanomedicine Nanotechnology, Biol. Med. 5 (2009) 382–386. https://doi.org/10.1016/J.NANO.2009.06.005. |
| [20] | D. Zhang, X.L. Ma, Y. Gu, H. Huang, G.W. Zhang, Green Synthesis of Metallic Nanoparticles and Their Potential Applications to Treat Cancer, Front. Chem. 8 (2020) 1–18. https://doi.org/10.3389/fchem.2020.00799. |
| [21] | A. Król, V. Railean-Plugaru, P. Pomastowski, B. Buszewski, Phytochemical investigation of Medicago sativa L. extract and its potential as a safe source for the synthesis of ZnO nanoparticles: The proposed mechanism of formation and antimicrobial activity, Phytochem. Lett. 31 (2019) 170–180. https://doi.org/10.1016/J.PHYTOL.2019.04.009. |
| [22] | A. Ashraf, S. Zafar, K. Zahid, M. Salahuddin Shah, K.A. Al-Ghanim, F. Al-Misned, S. Mahboob, Synthesis, characterization, and antibacterial potential of silver nanoparticles synthesized from Coriandrum sativum L., J. Infect. Public Health. 12 (2019) 275–281. https://doi.org/10.1016/J.JIPH.2018.11.002. |
| [23] | Z. Yu, J. Liu, H. He, Y. Wang, Y. Zhao, Q. Lu, Y. Qin, Y. Ke, Y. Peng, Green synthesis of silver nanoparticles with black rice (Oryza sativa L.) extract endowing carboxymethyl chitosan modified cotton with high anti-microbial and durable properties, Cellul. 2021 283. 28 (2021) 1827–1842. https://doi.org/10.1007/S10570-020-03639-Z. |
| [24] | R. Tamileswari, M. Haniff Nisha, S.S. Jesurani, Green Synthesis of Silver Nanoparticles using Brassica Oleracea (Cauliflower) and Brassica Oleracea Capitata (Cabbage) and the Analysis of Antimicrobial Activity, Int. J. Eng. Res. Technol. 4 (2015) 1071–1074. www.ijert.org (accessed March 27, 2022). |
| [25] | S.T. Shah, I.P. Sari, D.H.Y. Yanto, Z.Z. Chowdhury, M.N. Bashir, I.A. Badruddin, M. Hussien, J.S. Lee, Nature’s nanofactories: biogenic synthesis of metal nanoparticles for sustainable technologies, Green Chem. Lett. Rev. 18 (2025) 1–42. https://doi.org/10.1080/17518253.2024.2448171. |
| [26] | F. Benyettou, R. Rezgui, F. Ravaux, T. Jaber, K. Blumer, M. Jouiad, L. Motte, J.C. Olsen, C. Platas-Iglesias, M. Magzoub, A. Trabolsi, Synthesis of silver nanoparticles for the dual delivery of doxorubicin and alendronate to cancer cells, J. Mater. Chem. B. 3 (2015) 7237–7245. https://doi.org/10.1039/C5TB00994D. |
| [27] | S.H. Lee, B.H. Jun, Silver Nanoparticles: Synthesis and Application for Nanomedicine, Int. J. Mol. Sci. 20 (2019) 865. https://doi.org/10.3390/IJMS20040865. |
| [28] | G.S. Tkemaladze, K.A. Makhashvili, Climate changes and photosynthesis, Ann. Agrar. Sci. 14 (2016) 119–126. https://doi.org/10.1016/J.AASCI.2016.05.012. |
| [29] | M.I. Skiba, V.I. Vorobyova, Synthesis of Silver Nanoparticles Using Orange Peel Extract Prepared by Plasmochemical Extraction Method and Degradation of Methylene Blue under Solar Irradiation, Adv. Mater. Sci. Eng. 2019 (2019) 1–8. https://doi.org/10.1155/2019/8306015. |
| [30] | M. Zia, S. Gul, J. Akhtar, I. Ul Haq, B.H. Abbasi, A. Hussain, S. Naz, M.F. Chaudhary, Green synthesis of silver nanoparticles from grape and tomato juices and evaluation of biological activities, IET Nanobiotechnology. 11 (2017) 193–199. https://doi.org/10.1049/IET-NBT.2015.0099. |
| [31] | F.U. Asoiro, S.L. Ezeoha, G.I. Ezenne, C.B. Ugwu, Chemical and Mechanical Properties of Velvet Tamarind Fruit (Dalium Guineese), Niger. J. Technol. 36 (2017) 252–260. |
| [32] | O. Zacchaeus, A. Iyadunni, A. Johnson, U. Daubotei, Black Velvet Tamarind : Phytochemical Analysis, Antiradical and Antimicrobial Properties of the Seed Extract for Human Therapeutic and Health Benefits, J. Phytopharm. 10 (2021) 249–255. https://doi.org/10.31254/phyto.2021.10406. |
| [33] | U.E. Odoh, Establishment of Quality Parameters and Pharmacognostical Profiling of Dialium guinneense, World J. Innov. Res. 8 (2020) 47–46. |
| [34] | I.A. Ajayi, A.A. Raji, E.O. Ogunkunle, Green synthesis of silver nanoparticles from seed extracts of Cyperus esculentus and Butyrospermum paradoxum, IOSR J. Pharm. Biol. Sci. Ver. I. 10 (2015) 2319–7676. https://doi.org/10.9790/3008-10417690. |
| [35] | B. Ankudze, V.B. Samlafo, Repeated Use of Cyperus esculentus Tubers, Towards Sustainable Green Synthesis of Silver Nanoparticles, BioNanoScience 2022. 12 (2022) 1150–1157. https://doi.org/10.1007/S12668-022-01032-7. |
| [36] | B. Ankudze, D. Neglo, Green synthesis of silver nanoparticles from peel extract of Chrysophyllum albidum fruit and their antimicrobial synergistic potentials and biofilm inhibition properties, BioMetals. 36 (2022) 865–876. https://doi.org/10.1007/S10534-022-00483-5/METRICS. |
| [37] | B. Ankudze, D. Neglo, F. Nsiah, Green synthesis of silver nanoparticles from discarded shells of velvet tamarind (Dialium cochinchinense) and their antimicrobial synergistic potentials and biofilm inhibition properties, BioMetals. 37 (2024) 143–156. https://doi.org/10.1007/S10534-023-00534-5/METRICS. |
| [38] | N.K. Ayisi, R. Appiah-Opong, B. Gyan, K. Bugyei, F. Ekuban, Plasmodium falciparum : Assessment of Selectivity of Action of Chloroquine, Alchornea cordifolia, Ficus polita, and Other Drugs by a Tetrazolium-Based Colorimetric Assay, Malar. Res. Treat. 2011 (2011) 1–7. https://doi.org/10.4061/2011/816250. |
| [39] | E.W. Nester, D.. Anderson, C.E. Roberts Jr, N.N. Pearsall, T. Nester, D. Hurley, Microbiology A human perspective, 4th Editio, McGraw-Hill, Boston., New York, USA, 2004. https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID=1856478 (accessed April 28, 2022). |
| [40] | A. Khodavandi, F. Alizadeh, F. Aala, Z. Sekawi, P.P. Chong, In vitro investigation of antifungal activity of allicin alone and in combination with azoles against Candida species, Mycopathologia. 169 (2010) 287–295. https://doi.org/10.1007/S11046-009-9251-3. |
| [41] | L.C. Nascimento Da Silva, J. Messias Sandes, M.M. De Paiva, J.M. De Araú Jo, R.C.B.Q. De Figueiredo, M.V. Da Silva, M.T.D.S. Correia, Anti-Staphylococcus aureus action of three Caatinga fruits evaluated by electron microscopy, Nat. Prod. Res. 27 (2013) 1492–1496. https://doi.org/10.1080/14786419.2012.722090. |
| [42] | C.G. Pierce, P. Uppuluri, A.R. Tristan, F.L. Wormley, E. Mowat, G. Ramage, J.L. Lopez-Ribot, A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing, Nat. Protoc. 3 (2008) 1494–1500. https://doi.org/10.1038/NPORT.2008.141. |
| [43] | N. Krithiga, A. Rajalakshmi, A. Jayachitra, Green Synthesis of Silver Nanoparticles Using Leaf Extracts of Clitoria ternatea and Solanum nigrum and Study of Its Antibacterial Effect against Common Nosocomial Pathogens, J. Nanosci. 2015 (2015) 1–8. https://doi.org/10.1155/2015/928204. |
| [44] | M. Vanaja, G. Annadurai, Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity, Appl. Nanosci. 3 (2013) 217–223. https://doi.org/10.1007/s13204-012-0121-9. |
| [45] | J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao, N. He, J. Hong, C. Chen, Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphoraleaf, Nanotechnology. 18 (2007) 105104. https://doi.org/10.1088/0957-4484/18/10/105104. |
| [46] | T.T.T. Vi, S.R. Kumar, Y.T. Huang, D.W. Chen, Y.K. Liu, S.J. Lue, Size-dependent antibacterial activity of silver nanoparticle-loaded graphene oxide nanosheets, Nanomaterials. 10 (2020) 1–18. https://doi.org/10.3390/nano10061207. |
| [47] | I. Santos, A. Sousa, A. Vale, F. Carvalho, E. Fernandes, M. Freitas, Protective effects of flavonoids against silver nanoparticles-induced toxicity, Arch. Toxicol. 99 (2025) 3105–3132. https://doi.org/10.1007/s00204-025-04068-2. |
| [48] | A.A. Alyousef, M. Arshad, R. AlAkeel, A. Alqasim, Biogenic silver nanoparticles by Myrtus communis plant extract: biosynthesis, characterization and antibacterial activity, Biotechnol. Biotechnol. Equip. 33 (2019) 931–936. https://doi.org/10.1080/13102818.2019.1629840. |