[1] | Amare, A., Worku, T., Ashagirie, B. et al. Bacteriological profile, antimicrobial susceptibility patterns of the isolates among street vended foods and hygienic practice of vendors in Gondar town, Northwest Ethiopia: a cross sectional study. BMC Microbiol 19, 120 (2019). https://doi.org/10.1186/s12866-019-1509-4. |
[2] | Argudin MA, Tenhagen BA, Fetsch A, et al. Virulence and resistance determinants of German Staphylococcus aureus ST398 isolates from nonhuman sources. Appl Environ Microbiol. 2011; 77: 3052-3060. |
[3] | Argudin MA, Tenhagen BA, Fetsch A, et al. Virulence and resistance determinants of German Staphylococcus aureus ST398 isolates from nonhuman sources. Appl Environ Microbiol. 2011; 77:3052-3060. |
[4] | Ayçiçek et al., (2004). Assessment of the bacterial contamination on hands of hospital food handlers. Food Control. Volume 15, Issue 4, June 2004, Pages 253-259. |
[5] | Becattini S. Doctoral dissertation, ETH Zurich. 2014. |
[6] | Bindschedler, L. V., Panstruga, R., & Spanu, P. D. (2016). Mildew-Omics: How Global Analyses Aid the Understanding of Life and Evolution of Powdery Mildews. Frontiers in plant science, 7, 123. https://doi.org/10.3389/fpls.2016.00123. |
[7] | Bougnom BP, Piddock LJ. ACS Publications. 2017. |
[8] | Bryan Delaney, Richard E Goodman, Gregory S Ladics, Food and Feed Safety of Genetically Engineered Food Crops, Toxicological Sciences, Volume 162, Issue 2, April 2018, Pages 361–371, https://doi.org/10.1093/toxsci/kfx249. |
[9] | Bryant, P.J., Huettner, B.H., Held, L.I., Ryerse, J., Szidonya, J., (1988). Mutations at the fat locus interfere with cell proliferation control and epithelial morphogenesis in Drosophila. Dev. Biol. 129: 541--554. |
[10] | Clarridge J. E., 3rd (2004). Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clinical microbiology reviews, 17(4), 840–862. https://doi.org/10.1128/CMR.17.4.840-862.2004. |
[11] | Clinical and Laboratory Standards Institute (2015) Performance Standards for Antimicrobial Susceptibility Testing; 25th Informational Supplement. CLSI Document M100-S25, Clinical and Laboratory Standards Institute, Wayne, PA. |
[12] | Cuny C, Friedrich A, Kozytska S, Layer F, Nübel U, Ohlsen K, Strommenger B, Walther B, Wieler L, Witte W. Emergence of methicillin-resistant Staphylococcus aureus (MRSA) in different animal species. Int J Med Microbiol. 2010 Feb; 300(2-3): 109-17. doi: 10.1016/j.ijmm.2009.11.002. Epub 2009 Dec 16. PMID: 20005777. |
[13] | David L. Smith, et.al., (2002). Animal antibiotic use has an early but important impact on the emergence of antibiotic resistance in human commensal bacteria. PNAS April 30, 2002 99 (9) 6434-6439. |
[14] | Deyno, S., Fekadu, S., & Astatkie, A. (2017). Resistance of Staphylococcus aureus to antimicrobial agents in Ethiopia: a meta-analysis. Antimicrobial resistance and infection control, 6, 85. https://doi.org/10.1186/s13756-017-0243-7. |
[15] | Doudoulakakis A, et al. Journal of Clinical Microbiology. 2017. |
[16] | Duran N., et.al., (2012). Antibiotic resistance genes & susceptibility patterns in staphylococci. The Indian Journal of Medical Research. 2012 Mar; 135:389-396. |
[17] | El Bayomi RM, Ahmed HA, Awadallah MA, et al. Occurrence, virulence factors, antimicrobial resistance, and genotyping of Staphylococcus aureus strains isolated from chicken products and humans. Vector Borne Zoonotic Dis. 2016; 16: 157-164. |
[18] | Esfarjani, F., Khaksar, R., Mohammadi Nasrabadi, F., Roustaee, R., Alikhanian, H., Khalaji, N., Mousavi Khaneghah, A. and Hosseini, H. (2016), "A preventative approach to promote food safety: Bacterial contamination of domestic refrigerators", British Food Journal, Vol. 118 No. 8, pp. 2076-2091. https://doi.org/10.1108/BFJ-01-2016-0025. |
[19] | Fair RJ, Tor Y. Perspectives in medicinal chemistry. 2014; 6: 25. |
[20] | Feleke M. et.al., (2014). The growing challenges of antibacterial drug resistance in Ethiopia. Journal of Global Antimicrobial Resistance, Volume 2, Issue 3, September 2014, Pages 148-154. |
[21] | Feleke, T., Eshetie, S., Dagnew, M. et al. (2018). Multidrug-resistant bacterial isolates from patients suspected of nosocomial infections at the University of Gondar Comprehensive Specialized Hospital, Northwest Ethiopia. BMC Res Notes 11, 602. |
[22] | Fluit AC, Visser MR, Schmitz FJ (2001) Molecular detection of antimicrobial resistance. Clin Microbiol Rev 14:836–871. |
[23] | Fueyo JM, Mendoza MC, Rodicio MR, et al. Cytotoxin and pyrogenic toxin superantigen gene profiles of Staphylococcus aureus associated with subclinical mastitis in dairy cows and relationships with macro-restriction genomic profiles. J Clin Microbiol. 2005; 43:1278-1284. |
[24] | Gosden, P. E., Andrews, J. M., Bowker, K. E., Holt, H. A., MacGowan, A. P., Reeves, D. S. et al. (1998). Comparison of the modified Stokes's method of susceptibility testing with results obtained using MIC methods and British Society of Antimicrobial Chemotherapy breakpoints. Journal of Antimicrobial Chemotherapy 42, 161–9. |
[25] | Hölzel, C. S., Tetens, J. L., & Schwaiger, K. (2018). Unraveling the Role of Vegetables in Spreading Antimicrobial-Resistant Bacteria: A Need for Quantitative Risk Assessment. Foodborne pathogens and disease, 15(11), 671–688.https://doi.org/10.1089/fpd.2018.2501. |
[26] | Humphreys H, et al. Journal of Hospital Infection. 2016; 94:3. |
[27] | Janda, J. M., & Abbott, S. L. (2007). 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. Journal of clinical microbiology, 45(9), 2761–2764. https://doi.org/10.1128/JCM.01228-07. |
[28] | Jarraud S. Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups (alleles), and human disease. Infect Immun. 2002; 70:631-641. |
[29] | Kesah C, Ben Redjeb S, Odugbemi TO, Boye CS, Dosso M, Ndinya Achola JO, Koulla-Shiro S, Benbachir M, Rahal K, Borg M. Prevalence of methicillin-resistant Staphylococcus aureus in eight African hospitals and Malta. Clin Microbiol Infect. 2003 Feb; 9(2): 153-6. doi: 10.1046/j.1469-0691.2003.00531. x. PMID: 12588338. |
[30] | Kessie, G., M. Ettayebi, A.M. Haddad, A.M. Shibi, F.J. Al-Shammary A.F. Tawfik and M.N. Al-Ahdal, (1998). Plasmid profiles and antibiotic resistance in coagulase negative staphylococci isolated from polluted water. J. Applied. Microbiol., 84: pp.417-422. |
[31] | Kumar, H.S., A. Parvathi and I. Karunasagar, (2005). Prevalence and antibiotic resistance of Escherichia coli in tropical seafood. World J. Microbiol. Biotechnol., 21: pp. 619-623. |
[32] | Land M, Hauser L, Jun SR, Nookaew I, Leuze MR, Ahn TH, Karpinets T, Lund O, Kora G, Wassenaar T, Poudel S, Ussery DW. Insights from 20 years of bacterial genome sequencing. Funct Integr Genomics. 2015 Mar; 15(2): 141-61. |
[33] | Landecker H. Body & Society. 2016; 22: 4. |
[34] | Laxminarayan R, et al. The Lancet. 2016; 387. |
[35] | Li G, Wu S, Luo W, et al. Staphylococcus aureus ST6-t701 isolates from food-poisoning outbreaks (2006-2013) in Xi’an, China. Foodborne Pathog Dis. 2015; 12:203‐206. |
[36] | Lindsay JA. Staphylococcus aureus genomics and the impact of horizontal gene transfer. Int J Med Microbiol. 2014 Mar; 304(2): 103-9. doi: 10.1016/j.ijmm.2013.11.010. Epub 2013 Dec 1. PMID: 24439196. |
[37] | Livermore DM. (2000). Antibiotic resistance in staphylococci. Int J Antimicrobial Agents. 16: S3–S10. |
[38] | Luepke KH, et al. Pharmacotherapy the Journal of Human Pharmacology and Drug Therapy. 2017; 37:1. |
[39] | Luo K, Shao F, Kamara KN, Chen S, Zhang R, Duan G, Yang H. Molecular characteristics of antimicrobial resistance and virulence determinants of Staphylococcus aureus isolates derived from clinical infection and food. J Clin Lab Anal. 2018 Sep; 32(7): e22456. |
[40] | M. L. Delignette-Muller, J. P. Flandrois, (1994). An accurate diffusion method for determining bacterial sensitivity to antibiotics, Journal of Antimicrobial Chemotherapy, Volume 34, Issue 1, July 1994, Pages 73–81. |
[41] | Mekonnen, S. A., et.al., (2018). Characterization of Staphylococcus aureus isolated from milk samples of dairy cows in small holder farms of North-Western Ethiopia. BMC veterinary research, 14(1), 246. |
[42] | Mišić, M., Čukić, J., Vidanović, D., Šekler, M., Matić, S., Vukašinović, M., & Baskić, D. (2017). Prevalence of Genotypes That Determine Resistance of Staphylococci to Macrolides and Lincosamides in Serbia. Frontiers in public health, 5, 200. |
[43] | Mritunjay, S. K., & Kumar, V. (2017). A study on prevalence of microbial contamination on the surface of raw salad vegetables. 3 Biotech, 7(1), 13. |
[44] | Monteiro, A. S., Pinto, B., Monteiro, J. M., Ferreira, R. M., Ribeiro, P., Bando, S. Y., Marques, S. G., Silva, L., Neto, W., Ferreira, G. F., Biofilm, M., & Abreu, A. G. (2019). Phylogenetic and Molecular Profile of Staphylococcus aureus Isolated from Bloodstream Infections in Northeast Brazil. Microorganisms, 7(7), 210. Publisher Site | Google Scholar |
[45] | OMEGA Innovations in nucleic acid isolation http://2015.igem.org/wiki/images/1/18/NUDT_CHIAN-Protoco1.pdf. |
[46] | Otarigho, B., & Falade, M. O. (2018). Analysis of antibiotics resistant genes in different strains of Staphylococcus aureus. Bioinformation, 14(3), 113–122. |
[47] | Papadopoulos P, Papadopoulos T, Angelidis AS, Kotzamanidis C, Zdragas A, Papa A, Filioussis G, Sergelidis D. Prevalence, antimicrobial susceptibility and characterization of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus isolated from dairy industries in north-central and north-eastern Greece. Int J Food Microbiol. 2019 Feb 16; 291:35-41. |
[48] | Qi Lin, Honghu Sun, Kai Yao, Jiong Cai, Yao Ren and Yuanlong Chi. The Prevalence, Antibiotic Resistance and Biofilm Formation of Staphylococcus aureus in Bulk Ready-To-Eat Foods. Biomolecules 2019, 9, 524. |
[49] | Rodríguez-Lázaro, D., Oniciuc, E. A., García, P. G., Gallego, D., Fernández-Natal, I., Dominguez-Gil, M., Eiros-Bouza, J. M., Wagner, M., Nicolau, A. I., & Hernández, M. (2017). Detection and Characterization of Staphylococcus aureus and Methicillin-Resistant S. aureus in Foods Confiscated in EU Borders. Frontiers in microbiology, 8, 1344. |
[50] | Santajit S, Indrawattana N. Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. Biomed Res Int. 2016; 2016:2475067. doi: 10.1155/2016/2475067. Epub 2016 May 5. PMID: 27274985; PMCID: PMC4871955. |
[51] | Scarborough, P., et.al., (2014). Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians, and vegans in the UK. Climatic Change 125 (2), 179-192. |
[52] | Syne, S. M., et.al., (2013). Microbiological hazard analysis of ready-to-eat meats processed at a food plant in Trinidad, West Indies. Infection ecology & epidemiology, 3, 10.3402 /iee. v3i0.20450. |
[53] | Thomer, L., Schneewind, O., & Missiakas, D. (2016). Pathogenesis of Staphylococcus aureus Bloodstream Infections. Annual review of pathology, 11, 343–364. |
[54] | Udo E, Dashti A. Detection of genes encoding aminoglycoside-modifying enzymes in staphylococci by polymerase chain reaction and dot blot hybridization. Int J Antimicrob Agents. 2000; 13:273-279. |
[55] | Van Tonder I., et.al., (2007). The personal and general hygiene practices of food handlers in the delicatessen sections of retail outlets in South Africa. J Environ Health. 2007; 70(4): 33-38. |
[56] | Vanderhaeghen W, et al. Epidemiology & Infection. 2010; 138:5. |
[57] | Wafaa Chaalal, Nadia Chaalal, Nadjette Bourafa, Mebrouk Kihal, Seydina M. Diene, and Jean-Marc Rolain. Characterization of Staphylococcus aureus Isolated from Food Products in Western Algeria, Jun 2018. |
[58] | Weisblum B. Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother. 1995 Mar; 39(3): 577-85. doi: 10.1128/aac.39.3.577. PMID: 7793855; PMCID: PMC162587. |
[59] | World Health Organization (WHO), (2002). Global strategy for containment of antimicrobial resistant. WHO/CDS/CSRS/DRS/2001-2002. |
[60] | Wu, S., Huang, J., Wu, Q., Zhang, F., Zhang, J., Lei, T., Chen, M., Ding, Y., & Xue, L. (2018). Prevalence and Characterization of Staphylococcus aureus isolated from retail vegetables in China. Frontiers in microbiology, 9, 1263. |
[61] | Zapun A, Contreras-Martel C, Vernet T. Penicillin-binding proteins, and beta-lactam resistance. FEMS Microbiol Rev. 2008; 32:361–85. |
[62] | Zhang KY, McClure JA, Elsayed S, et al. Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus. J Clin Microbiol. 2005; 43: 5026-5033. |
[63] | Zhang KY, McClure JA, Elsayed S, et al. Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus. J Clin Microbiol. 2005; 43:5026-5033. |
[64] | Zmantar, T., Kouidhi, B., Miladi, H., & Bakhrouf, A. (2011). Detection of macrolide and disinfectant resistance genes in clinical Staphylococcus aureus and coagulase-negative staphylococci. BMC research notes, 4, 453. |
[65] | Janda, J. M., & Abbott, S. L. (2007). 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. Journal of clinical microbiology, 45(9), 2761–2764. https://doi.org/10.1128/JCM.01228-07. |
[66] | Spiliopoulou, I., Petinaki, E., Papandreou, P., & Dimitracopoulos, G. (2004). erm(C) is the predominant genetic determinant for the expression of resistance to macrolides among methicillin-resistant Staphylococcus aureus clinical isolates in Greece. The Journal of antimicrobial chemotherapy, 53(5), 814–817. https://doi.org/10.1093/jac/dkh197. |
[67] | Ghanbari, F., Ghajavand, H., Havaei, R., Jami, M. S., Khademi, F., Heydari, L., Shahin, M., & Havaei, S. A. (2016). Distribution of erm genes among Staphylococcus aureus isolates with inducible resistance to clindamycin in Isfahan, Iran. Advanced biomedical research, 5, 62. https://doi.org/10.4103/2277-9175.179184. |
[68] | Kitti, T., Seng, R., Saiprom, N., Thummeepak, R., Chantratita, N., Boonlao, C., & Sitthisak, S. (2018). Molecular Characteristics of Methicillin-Resistant Staphylococci Clinical Isolates from a Tertiary Hospital in Northern Thailand. The Canadian journal of infectious diseases & medical microbiology, Journal canadien des maladies infectieuses et de la microbiologie medicale, 2018, 8457012. https://doi.org/10.1155/2018/8457012. |
[69] | Westh, H., Hougaard, D. M., Vuust, J., & Rosdahl, V. T. (1995). erm genes in erythromycin-resistant Staphylococcus aureus and coagulase-negative staphylococci. APMIS: acta pathologica, microbiologica, et immunologica Scandinavica, 103(3), 225–232. |
[70] | Fair, R. J., & Tor, Y. (2014). Antibiotics and bacterial resistance in the 21st century. Perspectives in medicinal chemistry, 6, 25–64. https://doi.org/10.4137/PMC.S14459. |
[71] | Chen, L., Yang, J., Yu, J., Yao, Z., Sun, L., Shen, Y., et al. (2005). VFDB: a reference database for bacterial virulence factors. J. Nucleic. Acids. 33, D325–D328. |
[72] | Argudín, M. Á, Mendoza, M. C., and Rodicio, M. R. (2010). Food poisoning and Staphylococcus aureus enterotoxins. Toxins 2, 1751–1773. doi: 10.3390/toxins2071751. |
[73] | Rinsky, J. L., Nadimpalli, M., Wing, S., Hall, D., Baron, D., Price, L. B., et al. (2013). Livestock-associated methicillin and multidrug resistant Staphylococcus aureus is present among industrial, not antibiotic-free livestock operation workers in North Carolina. PLoS One 8: e67641. doi: 10.1371/journal.pone.0067641. |