[1] | Chaturvedi, V and Kumar, A. 2008. Toxicity of sodium dodecyl sulfate in fishes and animals. A review, Int. J Appl. Bio and Pharm. Technol. 1(2), 630–633. DOI: 10.31931/fmbc.v19i1.2016.29-35. |
[2] | Marchesi, J.R., Owen, S.A., White, G.F., House, W.A and Russell, N.J. 1994. SDS-degrading bacteria attach to riverine sediment in response to the surfactant or its primary biodegradation product dodecan-1-ol, Microbiol, 140(11), part 1, 2999–3006. |
[3] | van Ginkel, C.G. 1996. Complete degradation of xenobiotic surfactants by consortia on aerobic microorganisms, Biodegrad. 7(2), 151–164. https://doi.org/10.1007/BF00114627. |
[4] | Piret, J, Desormeaux, A and Bergeron, M.G. 2002, Sodium lauryl ´ sulfate, a microbicide effective against enveloped and non enveloped viruses. Curr. Drug Targets, 3(1), 17–30. DOI: 10.2174/1389450023348037. |
[5] | Belanger, S.E., Lee, D.M., Bowling, J.W and LeBlanc, E.M. 2004. Responses of periphyton and invertebrates to a tetradecyl-pentadecyl sulfate mixture in stream mescosms. Environ. Toxico.l. Chem. 232, 2202-2213. https://doi.org/10.1897/04-49. |
[6] | Kegley, S. E., Hill, B. R., Ome, S and Choi, A. H. 2014. PAN Pesticide Database. Pesticide Action Network, North America. Oakland, CA.Available at http:www.pesticideinfo.org. |
[7] | Bruins M.R., Kapil S. and Oehme F.W. 2000. Microbial resistance to metals in the environment. Ecotox. Environ. Safe. 45(2), 198-207. DOI: 10.1006/eesa.1999.1860. |
[8] | Ji, G and Silver, S. 1995. Bacterial resistance mechanisms for heavy metals of environmental concern. J. Indust. Microbiol. 14(2), 61-75. DOI: https://doi.org/10.1007/BF01569887. |
[9] | Borgert, C.J., Price, B and Wells, C., et al. 2001 Evaluating chemical interaction studies for mixture risk assessment. Human Ecol. Risk Assess, 7(2), 259-306. https://doi.org/10.1080/20018091094376. |
[10] | Prince, B., Borgert, C.J., Wells, C.S and Simon, G.S. 2002. Assessing toxicity mixtures: The search for economic study designs. Hum. Ecol. Risk Assess. 8(2), 305-326. |
[11] | Ogah, J.O., Ogah, R.O and Ubaka, K.G. (2018). Bacteriological assessment of water from Otamiri River in Owerri, Imo State. Inter. J. Chem. and Chem. Proc. 4(2), 2545-5265. |
[12] | Okechi, R.N and Chukwra, E.I. 2020. Physicochemical and bacteriological qualities of Otamiri river water and sediment in South Eastern Nigeria. Front Environ Microbiol 6 (2), 18-26. https//doi: 10.11648/j.fem.20200602.12. |
[13] | Ogbulie, T., Ogbulie, J.A.N. and Uwazuruike, I. 2010. Biodegradation of Detergents by Aquatic Bacterial Flora from Otamiri River, Nigeria. Afri. J. Biotech. 7(6), 824-830. |
[14] | Mgbemena, I.C., Nnokwe, J.C., adjeroh, L.A and Onyemekara, N.N 2012. Resistance of bacteria isolated from Otamiri River to heavy metals and some selected antibiotics. Current Res. J. Biol. Sci. 4(5), 551-556. |
[15] | Nweke, C.O., Mbachu, I.A.C., Opurum, C.C and Mbagwu, C.I. 2017. Toxicity of quaternary mixtures of metals to aquatic microbial community. Int. Res. J. Environ. Sci, 6(3), 30-37. |
[16] | Boillot, C. and Perrodin, Y. 2008. Joint-action ecotoxicity of binary mixtures of glutaraldehyde and surfactants used in hospitals: Use of the toxicity index model and isobologram representation. Ecotox. Environ. Safe. 71, 252 – 259. DOI: 10.1016/j.ecoenv.2007.08.010. |
[17] | Berenbaum, M. 1985. The Expected effect of a combination of agents: The general solution. J. Theore. Biol. 114, 413 – 431. https://doi.org/10.1016/S0022-5193(85)80176-4. |
[18] | Altenburger R., Backhaus T., Boedeker W., Faust M., Scholze M. and Grimme L.H. 2000. Predictability of the toxicity of multiple chemical mixtures to Vibrio fischeri: mixtures composed of similarly acting chemicals. Environ. Toxicol. Chem. 19(9), 2341– 2347. https://doi.org/10.1002/etc.5620190926. |
[19] | Faust M., Altenburger R., Backhaus T., Boedeker W., Scholze M. and Grimme L.H. 2000. Predictive assessment of the aquatic toxicity of multiple chemical mixtures. J. Environ. Qual, 29, 1063 – 1068. https://doi.org/10.2134/jeq2000.004724250029000 40005x. |
[20] | Nweke, C.O., Umeh, S.I and Ohale, V.K. 2018. Toxicity of Four Metals and Their Mixtures to Pseudomonas fluorescens: An Assessment Using Fixed Ratio Design. Ecotox. Environ. Cont. 13(1), 1-14. https://doi:10.5132/eec.2018.01.01. |
[21] | Li, Y., Zhang, B., He X., Cheng, W-H., Xu, W., Luo, Y., Liang, R., Luo, H and Huang, K. 2014. Analysis of individual and combined effects of Ochratoxin A and Zearalenone on HepG2 and KK-1 cells with mathematical models. Toxins, 6, 1177 – 1192. doi: 10.3390/toxins6041177. |
[22] | Bong, C.W., Malfatti, F., Azam, F., Obayashi, Y and Suzuki, S. 2010. The effect of zinc exposure on the bacteria abundance and proteolytic activity in seawater. Interdisciplinary Studies on Environmental Chemistry-Biological Responses to Contaminants, 57-63. |
[23] | Hashida, Y and Inouye, K. 2007. Kinetic analysis of the activation –and –inhibition dual effects of cobalt ion on thermolysin activity. J. Biochem. 141, 843-853. https://doi.org/10.1093/jb/mvm088. |
[24] | Abdousalam, A. 2010. Effect of heavy metals on soil microbial processes and population. Egypt. Acad. J. Biolog. Sci., 2(2), 9 -14. |
[25] | Kelly, J., Haeggblom, M and Tate, R.L. 2003. Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter as indicated by analysis of microbial community phospholipid fatty acid profiles, Biol. Fertil. Soils, 38(2), 65-71. DOI: 10.1007/s00374-003-0642-1. |
[26] | Nwanyanwu, C.E., Adieze, I.E., Nweke, C.O and Nzeh, B.C. 2017. Combined effects of metals and chlorophenols on dehydrogenase activity of bacterial consortum. Inter. Res. J. Biol. Sci. 6(4), 10-20. |
[27] | Xu, X., Yan Li, Y., Wang, Y and Wang, Y. 2011. Assessment of toxic interactions of heavy metals in multi-component mixtures using sea urchin embryo-larval bioassay. Tox. In Vitro, 25(2011): 294-300. doi:10.1016/j.tiv.2010.09.007. |
[28] | Cider, I., Pullido, R.P., Burgos, M.J.G., Galvez, A and Lucas, R. 2017. Copper and zinc tolerance in bacteria isolated from fresh produce. J. Food Prot. 80(6), 969-975. DOI: 10.4315/0362-028X.JFP-16-513. |
[29] | Nwagwu, E.C., Yilwa, V.M, Egbe, N.E and Onwumere, G.B. 2017. Isolation and characterization of heavy metal tolerant bacteria from Panteka Stream, Kaduna, Nigeria and potential for bioremediation. Afr. J. Biotech. 16(1), 32-40. |
[30] | Khan, S., Cao, Q., Zheng, Y.M., Huang, Y.Z and Zhu, Y.G. 2008. Health risk of heavy metals in contaminated soils and food crops irrigated with waste water in Beiging, China. Environ. Pol. 152(3), 686-692. doi: 10.1016/j.envpol.2007.06.056. |
[31] | Fulladosa, E., Murat, J.C and Villaescusa, I. 2005. Study on the toxicity of binary equi-toxic mixtures of metals using the luminescent bacteria Vibrio fischeri as a biological target. Chemos, 58, 551-557. DOI: 10.1016/j.chemosphere.2004.08.007. |
[32] | Macomber, L and Hausinger, R.P. 2011. Mechanisms of nickel toxicity in microorganisms. Metall. 3(11), 1153–1162. doi: 10.1039/c1mt00063b. |
[33] | Gikas, P. 2007. Kinetic responses of activated sludge to individual and joint nickel (Ni(II)) and cobalt (Co(II)): An isobolographic approach. J. Haz. Mat. 143(1), 246-256. https://doi.org/10.1016/j.jhazmat.2006.09.019. |
[34] | Zeb, B., Ping, Z., Mahmood, Q., Lin, Q., Pervez, A., Irshad, M., Bilal, M., Bhatti, Z.A and Shaheen, S. 2016. Assessment of combined toxicity of heavy metals from industrial wastewaters on Photobacterium phosphoreum T3S, Appl Water Sci. 1-8. |
[35] | Mansour, S., A. Abdel-Hamid, A. A., Ibrahim, A.W., Mahmood, N. H and Moselhy, W. A. 2015. Toxicity of some pesticides, heavy metals and their mixtures to Vibrio fischeri bacteria and Daphnia magna: Comparative study. J. Biol. and Life Sci. 6(2), 221-240. |
[36] | Cserhati,T., Forgacs, and G. Oros, G. 2002. Biological activity and environmental impact of anionic surfactants. Environ. Inter. 28(5), 337–348. DOI: 10.1007/s11356-011-0539-8. |
[37] | Rocha, A.J.S., Gomes, V., Ngan, P.V., Passos, M.J.A.C.R and Furia, R.R. 2007. Effects of anionic surfactant and salinity on the bioenergetics of juveniles of Centropomus parallelus (Poey), Ecotox. Environ Safe. 68(3), 397– 404. https://doi.org/10.1016/j.ecoenv.2006.10.007. |
[38] | Rosety, M., Ordonez, F.J., Rosety-Rodr, Mıguez et al., 2001. Comparative study of the acute toxicity of anionic surfactans alkyl benzene sulphonate (ABS) and sodium dodecyl sulphate (SDS) on gilthead, Sparus aurata L., eggs. Histol. Histopath. 16(4), 1091–1095. |
[39] | Ooi, L., Heng, L.Y and Ahmad, A. 2015. Toxicity biosensor for sodium dodecyl sulfate using immobilized green fluorescent protein expressing Escherichia coli, J. Sensors. (2015), 1-9. http://dx.doi.org/10.1155/2015/809065. |
[40] | Ahlers, J., Riedhammer, C., Vogliano, M., Ebert, R-W., Ralph Kühne, R and Schüürmann, G. 2006. Acute to chronic ratios in aquatic toxicity variation across trophic levels and relationship with chemical structure. Environ. Toxicol, 25(11), 2937-2945. https://doi.org/10.1897/05-701R.1. |
[41] | Masakorala K, Turner A and Brown M 2011 Toxicity of synthetic surfactants to the marine macroalga, Ulva lactuca. Wat Air Soil Pol. 218, 283-291. doi: 10.1007/s11270-010-0641-4. |
[42] | Wiatrowska K., Komisarek J., Dłużewski P. 2015. Effects of heavy metals on the activity of dehydrogenases, phosphatases and urease in naturally and articially contaminated soils. J. Elem. 20(3), 743-756. DOI: 10.5601/jelem.2014.19.2.675. |
[43] | Cristani, M., Naccari, C., Nostro, A and Pizzimenti, A. 2011. Possible use of Serratia marcescens in toxic metal biosorption (removal). Environ. Sci. Pol. Res. 19(1), 161-168. DOI: 10.1007/s11356-011-0539-8. |
[44] | Horsemann, U.and Gelpke, N. 1991. Algal growth stimulation by chelatisation risks associated with complexants in P-free washing agents. Reuse Inter. Oceanographic Medicale, 260, 101-104. |
[45] | Dwyer, M., Yeoman, S., Lester, J.N and Perry, R. 1990. A review of non- phosphate detergent builders, utilization and environmental assessment. Environ Technol. 11, 263-294. http://pascalfrancis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19338225. |
[46] | Hagopian-Schlekat, T., Chandler, G.T and Shaw, T.J. 2001. Acute toxicity of five sediment-associated metals, individually and in a mixture, to the estuarine meiobenthic harpacticoid copepod Amphiascus tenuiremis. Mar. Environ. Res. 51, 247–264. https://doi.org/10.1016/S0141-1136(00)00102-1. |
[47] | Muthusamy, S., Peng, C and Ng, J.C. 2016. The binary, ternary and quaternary mixture toxicity of benzo[a]pyrene, arsenic, cadmium and lead in HepG2 cells. Toxicol. Res (Camb). 1; 5(2), 703–713. doi: 10.1039/c5tx00425j. |
[48] | Chen, C., Wang, Y., Qian, Y., Zhao, X and Wang, Q. 2015. The synergistic toxicity of the multiple chemical mixtures: implications for risk assessment in the terrestrial environment. Environ. Inter. 77, 95-105. DOI: 10.1016/j.envint.2015.01.014. |
[49] | Ge, H.L., Liu, S.S., Su, B.X and Qin, L.T. 2014. Predicting synergistic toxicity of heavy metals and ionic liquids on photobacterium Q67. J. Haz. Mat. 268, 77-83. https://doi.org/10.1016/j.jhazmat.2014.01.006. |
[50] | Yu, Y., LI, X., Yang, G., Wang, Y., Wand, X., Cai, L and Liu, X. 2019. Joint toxic effects of cadmium and four pesticides on the earthworm (Eisenia fetida). Chemosph. 227 (2019), 489-495. https://doi.org/10.1016/j.chemosphere.2019.04.064. |
[51] | Otitoloju, A. A. 2005. Crude oil plus dispersant: Always a boon or bane? Ecotox. Environ. Safe. 60, 198-202. doi: 10.1016/j.ecoenv.2003.12.021. |
[52] | Petersen, K., Heiaas, H.H. and Tollefsen, K.E. 2014. Combined effects of pharmaceuticals, personal care products, biocides and organic contaminants on the growth of Skeletonema pseudocostatum. Aqua. Toxicol. 150, 45–54. DOI: 10.1016/j.aquatox.2014.02.013. |