[1] | H. I. Gitari, N. N. Karanja, C. K. K. Gachene, S. Kamau, K. Sharma, and E. Schulte-Geldermann, “Nitrogen and phosphorous uptake by potato (Solanum tuberosum L.) and their use efficiency under potato-legume intercropping systems,” F. Crop. Res., vol. 222, pp. 78–84, 2018. |
[2] | G. O. Abong, M. W. Okoth, E. G. Karuri, J. N. Kabira, and F. M. Mathooko, “Nutrient contents of raw and processed products from Kenyan potato cultivars,” pp. 877–886, 2009. |
[3] | J. K. C. Ahuja et al., “Composition of Foods Raw , Processed , Prepared USDA National Nutrient Database for Standard Reference , Release 27 Documentation and User Guide,” U.S. Dep. Agric. Agric. Res. Serv. Beltsv. Hum. Nutr. Res. Cent. Nutr. Data Lab., vol. 2, no. November, pp. 1–136, 2013. |
[4] | FAO, “International Year of the Potato 2008: New light on a hidden treasure,” Food Agric. Organ., p. http://www.fao.org/potato-2008/en/world/, 2008. |
[5] | R. Felix, O. J. Onyango, and O. M. Eliazer, “Assessment of Irish Potato Cultivars’ Field Tolerance to Bacterial wilt(Ralstonia solanacearum) in Kenya,” Plant Pathol. J., vol. 9, no. 3, pp. 122–128, 2011. |
[6] | W. P. Kaguongo, N. M. Ng’ang’a, N. Muthoka, F. Muthami, and G. Maingi, “Seed potato subsector master plan for Kenya (2009-2014),” Seed potato study Spons. by GTZ-PSDA, USAID, CIP Gov. Kenya. Minist. Agric. Kenya, vol. 55, 2010. |
[7] | P. G. Champoiseau, J. B. Jones, and C. Allen, “Ralstonia solanacearum race 3 biovar 2 causes tropical losses and temperate anxieties,” Plant Heal. Prog., vol. 10, pp. 1–10, 2009. |
[8] | J. G. Elphinstone, “The current bacterial wilt situation: a global overview,” Bact. wilt Dis. Ralstonia solanacearum species complex, pp. 9–28, 2005. |
[9] | Y. A. Nion and K. Toyota, “Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum,” Microbes Environ., vol. 30, no. 1, pp. 1–11, 2015. |
[10] | J. J. Muthoni, H. Shimelis, and R. Melis, “Potato production in Kenya: Farming systems and production constraints,” J. Agric. Sci., vol. 5, no. 5, p. 182, 2013. |
[11] | M. G. Ward, “The regulatory landscape for biological control agents,” EPPO Bull., vol. 46, no. 2, pp. 249–253, 2016. |
[12] | M. M. A. Youssef and M. F. M. Eissa, “Biofertilizers and their role in management of plant parasitic nematodes. A review,” E3 J. Biotechnol. Pharm. Res, vol. 5, no. 1, pp. 1–6, 2014. |
[13] | S. Diallo, A. Crépin, C. Barbey, N. Orange, J.-F. Burini, and X. Latour, “Mechanisms and recent advances in biological control mediated through the potato rhizosphere,” FEMS Microbiol. Ecol., vol. 75, no. 3, pp. 351–364, 2011. |
[14] | M. E. Nemutanzhela, Y. Roets, N. Gardiner, and R. Lalloo, “The use and benefits of Bacillus based biological agents in aquaculture,” Intech, 2014. |
[15] | L. Verschuere, G. Rombaut, P. Sorgeloos, and W. Verstraete, “Probiotic bacteria as biological control agents in aquaculture,” Microbiol. Mol. Biol. Rev., vol. 64, no. 4, pp. 655–671, 2000. |
[16] | S. Compant, B. Duffy, J. Nowak, C. Clément, and E. A. Barka, “Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects,” Appl. Environ. Microbiol., vol. 71, no. 9, pp. 4951–4959, 2005. |
[17] | J. Shafi, H. Tian, and M. Ji, “Bacillus species as versatile weapons for plant pathogens: a review,” Biotechnol. Biotechnol. Equip., vol. 31, no. 3, pp. 446–459, 2017. |
[18] | P. Chowdappa, S. P. M. Kumar, M. J. Lakshmi, and K. K. Upreti, “Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3,” Biol. Control, vol. 65, no. 1, pp. 109–117, 2013. |
[19] | E. K. Kago, Z. M. Kinyua, J. M. Maingi, and P. O. Okemo, “Diversity of Ralstonia solanacerum Strains in Solanaceous Crops Production Regions of Central Kenya,” vol. 16, no. 1, pp. 1–12, 2017. |
[20] | M. Fegan and P. Prior, How complex is the Ralstonia solanacearum species complex. APS press, 2005. |
[21] | M. Balouiri, M. Sadiki, and S. K. Ibnsouda, “Methods for in vitro evaluating antimicrobial activity: A review,” J. Pharm. Anal., vol. 6, no. 2, pp. 71–79, 2016. |
[22] | S. Kumar, G. Stecher, and K. Tamura, “MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets,” Mol. Biol. Evol., vol. 33, no. 7, pp. 1870–1874, 2016. |
[23] | R. Rado et al., “Biocontrol of potato wilt by selective rhizospheric and endophytic bacteria associated with potato plant,” African J. Food, Agric. Nutr. Dev., vol. 15, no. 1, pp. 9762–9776, 2015. |
[24] | E. Aley and J. Elphinstone, “Culture media for Ralstonia solanacearum isolation, identification and maintenance,” Fitopatologia, vol. 30, pp. 126–130, 1995. |
[25] | E.-J. Park et al., “MicroTom-A model plant system to study bacterial wilt by Ralstonia solanacearum,” Plant Pathol. J., vol. 23, no. 4, pp. 239–244, 2007. |
[26] | Q.-Y. Xue et al., “Evaluation of the strains of Acinetobacter and Enterobacter as potential biocontrol agents against Ralstonia wilt of tomato,” Biol. Control, vol. 48, no. 3, pp. 252–258, 2009. |
[27] | A. A. Almoneafy, K. U. Kakar, Z. Nawaz, B. Li, Y. Chun-lan, and G.-L. Xie, “Tomato plant growth promotion and antibacterial related-mechanisms of four rhizobacterial Bacillus strains against Ralstonia solanacearum,” Symbiosis, vol. 63, no. 2, pp. 59–70, 2014. |
[28] | J. N. Brazelton, E. E. Pfeufer, T. A. Sweat, B. B. M. Gardener, and C. Coenen, “2, 4-Diacetylphloroglucinol alters plant root development,” Mol. Plant-Microbe Interact., vol. 21, no. 10, pp. 1349–1358, 2008. |
[29] | K. R. Oldenburg, K. T. Vo, B. Ruhland, P. J. Schatz, and Z. Yuan, “A dual culture assay for detection of antimicrobial activity,” J. Biomol. Screen., vol. 1, no. 3, pp. 123–130, 1996. |
[30] | R. M. Maier, I. L. Pepper, and C. P. Gerba, “Cultural methods,” Environ. Microbiol., p. 397, 2009. |
[31] | L. K. Otto-Hanson, Z. Grabau, C. Rosen, C. E. Salomon, and L. L. Kinkel, “Pathogen variation and urea influence selection and success of Streptomyces mixtures in biological control,” Phytopathology, vol. 103, no. 1, pp. 34–42, 2013. |
[32] | J. W. Kloepper, C.-M. Ryu, and S. Zhang, “Induced systemic resistance and promotion of plant growth by Bacillus spp.,” Phytopathology, vol. 94, no. 11, pp. 1259–1266, 2004. |
[33] | D. Haas and G. Défago, “Biological control of soil-borne pathogens by fluorescent pseudomonads,” Nat. Rev. Microbiol., vol. 3, no. 4, p. 307, 2005. |
[34] | J. M. Raaijmakers, I. De Bruijn, O. Nybroe, and M. Ongena, “Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics,” FEMS Microbiol. Rev., vol. 34, no. 6, pp. 1037–1062, 2010. |
[35] | N. Ashwini and S. Srividya, “Potentiality of Bacillus subtilis as biocontrol agent for management of anthracnose disease of chilli caused by Colletotrichum gloeosporioides OGC1,” 3 Biotech, vol. 4, no. 2, pp. 127–136, 2014. |
[36] | S. N. Das et al., “Plant growth-promoting chitinolytic Paenibacillus elgii responds positively to tobacco root exudates,” J. Plant Growth Regul., vol. 29, no. 4, pp. 409–418, 2010. |
[37] | S. Timmusk, N. Grantcharova, and E. G. H. Wagner, “Paenibacillus polymyxa invades plant roots and forms biofilms,” Appl. Environ. Microbiol., vol. 71, no. 11, pp. 7292–7300, 2005. |
[38] | W. M. Haggag and S. Timmusk, “Colonization of peanut roots by biofilm‐forming Paenibacillus polymyxa initiates biocontrol against crown rot disease,” J. Appl. Microbiol., vol. 104, no. 4, pp. 961–969, 2008. |
[39] | L. Mei, Y. Liang, L. Zhang, Y. Wang, and Y. Guo, “Induced systemic resistance and growth promotion in tomato by an indole-3-acetic acid-producing strain of Paenibacillus polymyxa,” Ann. Appl. Biol., vol. 165, no. 2, pp. 270–279, 2014. |
[40] | E. N. Grady, J. MacDonald, L. Liu, A. Richman, and Z.-C. Yuan, “Current knowledge and perspectives of Paenibacillus: a review,” Microb. Cell Fact., vol. 15, no. 1, p. 203, 2016. |
[41] | B. Zhao, Y. L. He, J. Huang, S. Taylor, and J. Hughes, “Heterotrophic nitrogen removal by Providencia rettgeri strain YL,” J. Ind. Microbiol. Biotechnol., vol. 37, no. 6, pp. 609–616, 2010. |
[42] | E. G. Wulff, C. M. Mguni, C. N. Mortensen, C. L. Keswani, and J. Hockenhull, “Biological control of black rot (Xanthomonas campestris pv. campestris) of brassicas with an antagonistic strain of Bacillus subtilis in Zimbabwe,” Eur. J. Plant Pathol., vol. 108, no. 4, pp. 317–325, 2002. |
[43] | Z. Kamil, M. Saleh, and S. Moustafa, “Isolation and identification of rhizosphere soil chitinolytic bacteria and their potential in antifungal biocontrol 1,” 2007. |
[44] | S. J. Jung et al., “Effect of chitinase-producing Paenibacillus illinoisensis KJA-424 on egg hatching of root-knot nematode (Meloidogyne incognita),” J. Microbiol. Biotechnol., vol. 12, no. 6, pp. 865–871, 2002. |
[45] | Z. R. Khan, D. G. James, C. A. O. Midega, and J. A. Pickett, “Chemical ecology and conservation biological control,” Biol. Control, vol. 45, no. 2, pp. 210–224, 2008. |
[46] | J. E. Loper and M. N. Schroth, “Influence of bacterial sources of indole-3-acetic acid on root elongation of sugar beet.,” Phytopathology, vol. 76, no. 4, pp. 386–389, 1986. |
[47] | A. W. Eastman, D. E. Heinrichs, and Z.-C. Yuan, “Comparative and genetic analysis of the four sequenced Paenibacillus polymyxa genomes reveals a diverse metabolism and conservation of genes relevant to plant-growth promotion and competitiveness,” BMC Genomics, vol. 15, no. 1, p. 851, 2014. |
[48] | H. Chauhan, D. J. Bagyaraj, G. Selvakumar, and S. P. Sundaram, “Novel plant growth promoting rhizobacteria—Prospects and potential,” Appl. Soil Ecol., vol. 95, pp. 38–53, 2015. |
[49] | S. B. Sharma, R. Z. Sayyed, M. H. Trivedi, and T. A. Gobi, “Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils,” Springerplus, vol. 2, no. 1, p. 587, 2013. |
[50] | J. Xie, H. Shi, Z. Du, T. Wang, X. Liu, and S. Chen, “Comparative genomic and functional analysis reveal conservation of plant growth promoting traits in Paenibacillus polymyxa and its closely related species,” Sci. Rep., vol. 6, p. 21329, 2016. |
[51] | D. Duca, J. Lorv, C. L. Patten, D. Rose, and B. R. Glick, “Indole-3-acetic acid in plant–microbe interactions,” Antonie Van Leeuwenhoek, vol. 106, no. 1, pp. 85–125, 2014. |
[52] | B. Weselowski, N. Nathoo, A. W. Eastman, J. MacDonald, and Z.-C. Yuan, “Isolation, identification and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production,” BMC Microbiol., vol. 16, no. 1, p. 244, 2016. |
[53] | L. M. Srivastava, Plant growth and development: hormones and environment. Elsevier, 2002. |
[54] | J. K. Vessey, “Plant growth promoting rhizobacteria as biofertilizers,” Plant Soil, vol. 255, no. 2, pp. 571–586, 2003. |
[55] | C. Ghanashyam and M. Jain, “Role of auxin-responsive genes in biotic stress responses,” Plant Signal. Behav., vol. 4, no. 9, pp. 846–848, 2009. |
[56] | X. Wang, L. Wang, J. Wang, P. Jin, H. Liu, and Y. Zheng, “Bacillus cereus AR156-induced resistance to Colletotrichum acutatum is associated with priming of defense responses in loquat fruit,” PLoS One, vol. 9, no. 11, p. e112494, 2014. |
[57] | L. C. Van Loon, P. Bakker, and C. M. J. Pieterse, “Systemic resistance induced by rhizosphere bacteria,” Annu. Rev. Phytopathol., vol. 36, no. 1, pp. 453–483, 1998. |
[58] | S. C. M. Van Wees, S. Van der Ent, and C. M. J. Pieterse, “Plant immune responses triggered by beneficial microbes,” Curr. Opin. Plant Biol., vol. 11, no. 4, pp. 443–448, 2008. |
[59] | W. Akram, T. Anjum, B. Ali, and A. Ahmad, “Screening of native bacillus strains to induce systemic resistance in tomato plants against fusarium wilt in split root system and its field applications.,” Int. J. Agric. Biol., vol. 15, no. 6, 2013. |
[60] | K. K. Pal and B. M. Gardener, “Biological control of plant pathogens,” plant Heal. Instr., vol. 2, pp. 1117–1142, 2006. |