[1] | Torstensson, L., Behavior of glyphosate in soils and its degradation. In: Grossbard, E., Atkinson, D. (Eds.), The Herbicide Glyphosate. Butterworths, Boston, pp. 137 – 150, 1985. |
[2] | Levesque, C.A., and Rahe, J.E., 1992, Herbicide interactions with fungal root pathogens, with special reference to glyphosate. Ann. Rev. Phytopath. 30, 579 – 602. |
[3] | Vereecken, H., 2005, Mobility and leaching of glyphosate: a review. Pest Manag. Sci. 61, 139 – 1151. |
[4] | Bentley, R., 1990, The shikimate pathway– a metabolic tree with many branches. Crit. Rev. Biochem. Mol. Biol. 25, 307 – 308. |
[5] | Franz, J. E., Mao, M.K., and Sikorski, J.A., Glyphosate: a unique herbicide. American Chemical society Monograph 189. American chemical society, Washington DC., 1997. |
[6] | Haney, R. L., Senseman, S. A., Hons, F. M., and Zuberer, D. A., 2000, Effect of glyphosate on soil microbial activity and biomass. Weed Sci. 48, 89 – 93. |
[7] | Busse, M. D., Ratcliff, A. W., Shestak, C. J. and Powers, R. F., 2001, Glyphosate toxicity and the effects of long-term vegetation control on soil microbial communities. Soil Biol. Biochem. 33, 1777 – 1789. |
[8] | Lym, R. G., 2000, Leafy spurge (Euphorbia esula) control with glyphosate plus 2,4-D. J. Range Manage. 53, 66 – 72. |
[9] | Espinoza, N., and Mera, M., Some broadleaf herbicides used in mixtures with glyphosate may hinder the growth of narrow-leafed lupin. In: J.A. Palta and J.B. Berger (eds). 2008. ‘Lupins for Health and Wealth’ Proceedings of the 12th International Lupin Conference, 14-18 Sept. 2008, Fremantle, Western Australia. International Lupin Association, Canterbury, New Zealand, 2008. |
[10] | Tsui, M. T. K., and Chu, L. M., 2003, Aquatic toxicity of glyphosate-based formulations: comparison between different organisms and the effects of environmental factors. Chemosphere 52, 1189 – 1197. |
[11] | Ratcliff, A.W., Busse, M. D., and Shestak, C. J., 2006, Changes in microbial community structure following herbicide (glyphosate) additions to forest soils. Appl. Soil Ecol. 34, 114 – 124. |
[12] | O'Sullivan, P. A., and O'Donovan, J. T., 1980, Influence of various herbicides and Tween 20 on the effectiveness of glyphosate. Can. J. Plant Sci. 60, 939 – 945. |
[13] | Flint, J. L., and Barrett, M., 1989, Antagonism of glyphosate toxicity to johnsongrass by 2,4-D and dicamba. Weed Sci. 37, 700 – 705. |
[14] | Reynolds, D., Steve, C., and Jordan, D., 2000, Cutleaf eveningprimrose control with preplant burndown herbicide combinations in cotton. The Journal of Cotton Science 4, 124 – 129. |
[15] | Sharma, S. D., and Singh, M., 2001, Surfactants increase toxicity of glyphosate and 2,4-D to Brazil Pulsey. HortScience 36(4), 726 – 728. |
[16] | Daugherty, D., and Karel, S., 1994, Degradation of 2,4-dichlorophenoxyacetic acid by Pseudomonas cepacia DBO1 (pRO101) in a dual-substrate chemostat. Appl. Environ. Microbiol. 60, 3261 – 3267. |
[17] | Kohring, G-W., Zhang, X., and Wiegel J., 1989, Anaerobic dechlorination of 2,4-dichlorophenol in freshwater sediments in the presence of sulphate. Appl. Environ. Microbiol. 55(10), 2735 – 2737. |
[18] | Zhang, X., and Wiegel, J., 1990, Sequential anaerobic degradation of 2,4-dichlorophenol in freshwater sediments. Appl. Environ. Microbiol. 56(4), 1119 – 1127 |
[19] | Fukumori, F., and Hausinger, R., 1993, Alcaligenes eutrophus JMP134 “2,4- dichlorophenoxyacetatemonooxygenase” is an α-ketoglutarate-dependent dioxygenase. J. Bacteriol. 175, 2083 – 2086. |
[20] | U.S.D.A., Forest Service, Pesticide background statements. p. G1-G72. In Agriculture Handbook No. 633. Vol. 1. Herbicides. Part 2, 1984. |
[21] | WHO, Environmental Health Criteria 159, Toxicological Evaluations - Glyphosate; International Programme on Chemical Safety, World Health Organization: Geneva, Switzerland, 1988. |
[22] | U.S. EPA, Pesticide Fact Handbook. Vol. 2. p. 301-312. Noyes Data Corporation. Park Ridge, New Jersey, 1990. |
[23] | Giesey, J. P., Dobson, S., and Solomon, K. R., 2000, Ecotoxicological risk assessment for Roundup herbicide. Rev. Environ. Contam. Toxicol. 167, 35 – 120. |
[24] | U.S. EPA, Reregistration Eligibility Decision (RED) 2,4-D; EPA 738-R-05-002; U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Office of Pesticide Programs, U.S. Government Printing Office: Washington, DC, 2005. |
[25] | Brain, P., and Cousens, R., 1989, An equation to describe dose responses where there is stimulation of growth at low doses. Weed Res. 29, 93 – 96. |
[26] | Cedergreen, N., Ritz, C. and Streibig, J. C., 2005, Improved empirical models describing hormesis. Environ. Toxicol. Chem. 24(12), 3166 – 3172. |
[27] | Schabenberger, O., Tharp, B. E., Kells, J. J., and Penner, D., 1999, Statistical test for hormesis and effective dosages in herbicide dose–response. Agron. J. 91, 713–721. |
[28] | Boillot, C., and Perrodin, Y., 2008. Joint-action ecotoxicity of binary mixtures of glutaraldehyde and surfactants used in hospitals: use of the Toxicity Index model and isobologram representation. Ecotoxicol. Environ. Saf. 71, 252 – 259. |
[29] | Calabrese, E. J., and Blain, R., 2005, The occurrence of hormetic dose responses in the toxicological literature, the hormesis database: an overview. Toxicol. Appl. Pharmacol. 202, 289– 301. |
[30] | Christofi, N., Hoffmann, and C., Tosh, L., 2002, Hormesis responses of free and immobilized light-emitting bacteria. Ecotoxicol. Environ. Saf. 52, 227 – 231. |
[31] | Nweke, C.O., and Okpokwasili, G.C., 2010a, Influence of exposure time on phenol toxicity to refinery wastewater bacteria. J. Environ. Chem. Ecotoxicol. 2(2), 20 – 27. |
[32] | Nweke, C.O., and Okpokwasili, G. C., 2010b, Inhibition of dehydrogenase activity in petroleum refinery wastewater bacteria by phenolic compounds. Ambi-Água 5(1), 6-16. |
[33] | Tsui, K. M. C., Kevin D. H., and Hodgkiss I. J., 2001, Effects of glyphosate on lignicolous freshwater fungi of hong Kong. Sydowia 53(1), 167 – 174. |
[34] | Partoazar, M., Hoodaji M., and Tahmourespour, A., 2011, The effect of glyphosate application on soil microbial activities in agricultural land. Afr. J. Biotechnol. 10(83), 19419 – 19424. |
[35] | Keweloh, H., Weyrauch, G., and Rehm, H. J., 1990, Phenol induced membrane changes in free and immobilized Escherichia coli. Appl. Microbiol. Biotechnol. 33, 65 – 71. |
[36] | Heipieper, H. J., Keweloh, H., and Rehm, H. J. 1991, Influence of phenols on growth and membrane permeability of free and immobilized Escherichia coli. Appl. Environ. Microbiol. 57, 1213 –1217 |
[37] | Heipieper, H. J., Diefenbach, R., and Keweloh, H., 1992, Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl. Environ. Microbiol. 58, 1847 – 1852. |
[38] | Cenci, G., Caldini, G., and Morozzi, G., 1987, Chlorinated phenol toxicity by bacteria and biochemical tests. Bull. Environ. Contam. Toxicol. 38, 868 – 875. |
[39] | Gül, S., Öztürk, D., 1998, Determination of the structure-toxicity relationship of amphiprotic compounds by means of the inhibition of the dehydrogenase activity of Pseudomonas putida Turkish J. Chem 22, 341 – 349. |
[40] | Ren, S., and Frymier, P. D., 2002, Estimating the toxicities of organic chemicals to bioluminescent bacteria and activated sludge. Water Res. 36, 4406 – 4414. |
[41] | Chan, C-M., Lo, W., Wong, K-Y., and Chung, W-F., 1999, Monitoring the toxicity of phenolic chemicals to activated sludge using a novel optical scanning respirometer. Chemosphere 39(9), 1421 – 1432. |
[42] | Deneer, J.W., 2000, Toxicity of mixtures of pesticides in aquatic systems. Pest Manage. Sci. 56 (6), 516 – 520. |