[1] | Cavigelli MA, Robertson GP. The functional significance of denitrifier community composition in a terrestrial ecosystem. Ecology, 81: 1402-1414, 2000. |
[2] | Torsvik V, Daae FL, Sandaa RA. Novel techniques for analysing microbial diversity in natural and perturbed environments. J. Biotechnol, 64: 53–62, 1998. |
[3] | Sekiguchi H, Watanabe M, Nakahara T, Xu B, Uchiyam H. Succession of bacterial community structure along the Changjiang River determined by denaturing gradient gel electrophoresis and clone library analysis. Appl. Environ. Microbiol, 68: 5142–5150, 2002. |
[4] | Horner-Devine MC, Lage M, Hughes JB, Bohannan BJM. A taxa-area relationship for bacteria. Nature, 432: 750–753, 2004. |
[5] | Tian CJ, Tan X, Wu W, Ye X, Liu D, Yang H. Spatiotemporal transition of bacterioplankton diversity in a large shallow hypertrophic freshwater lake, as determined by denaturing gradient gel electrophoresis. J. Plankton Res, 31:885–897, 2009. |
[6] | Sood AKD, Singh PP, Sharma S.. Assessment of bacterial indicators and physicochemical parameters to investigate pollution status of gangetic river system of Uttarakhand (India). Ecol Indic, 8:709–717, 2008. |
[7] | Ramette A, Tiedje J. Biogeography: an emerging cornerstone for understanding prokaryotic diversity, ecology, and evolution. Microb. Ecol, 53: 197–207, 2007. |
[8] | Franklin R, Mills A. Introduction in the spatial distribution of microbes in the environment. Springer, New York, 2007. |
[9] | Wang Y, Shi J, Wang H, Lin Q, Chen X, Chen Y. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotoxicol. Environ. Safety, 67: 75-81, 2007. |
[10] | Johnsen K, Jacobsen CS, Torsvik V, Sorensen J. Pesticide effects on bacterial diversity in agricultural soils: a review. Biol. Fertil. Soils, 33:443–453, 2001. |
[11] | Weber S, Stubner S, Conrad R. Bacterial populations colonizing and degrading rice straw in anoxic paddy soil. Appl. Environ. Microbiol, 67:1318–1327, 2001. |
[12] | Ibekwe AM, Kennedy AC, Frohne PS, Papiernik SK, Yang CH, Crowley DE. Microbial diversity along a transect of agronomic zones. FEMS Microbiol, Ecol. 39:183–191, 2002. |
[13] | Dirk JE, Garbeva P, Salles J. Effects of agronomical measures on the microbial diversity of soils as related to the suppression of soil-borne plant pathogens. Biodegradation, 13: 29–40, 2002. |
[14] | Entry JA, Mills D, Mathee K, Jayachandran K, Sojka RE, Narasimhan G. Influence of irrigated agriculture on soil microbial diversity. Appl. Soil. Ecol, 40:146–154, 2008. |
[15] | Hengstmann UKC, Janssen PH, Liesack W. Comparative phylogenetic assignment of Environmental sequences of genes encoding 16S rRNA and numerically abundant culturable bacteria from an anoxic rice paddy soil. Appl. Environ. Microbio, 65: 5050–5058, 1999. |
[16] | Liesack W, Schnell S, Revsbech NP. Microbiology of flooded rice paddies. FEMS Microbiol. Rev, 24: 625-645, 2000. |
[17] | Weon H, Dungan RS, Kwon S, Kim J. The phylogeny of fluorescent pseudomonads in an unflooded rice paddy soil. Annals of Microbiology, 57: 299-306, 2007. |
[18] | Das J, Das B, Dangar TK. Microbial populations and Bacillus thuringiensis diversity in saline rice field soils of coastal Orissa, India. Afr. J. Microbiol. Res, 2:326-331, 2008. |
[19] | Rui J, Peng J, Lu Y. Succession of bacterial populations during plant residue decomposition in rice field soil. Appl. Environ. Microbiol, 75:4879–4886, 2009. |
[20] | Reche MHLR, Fiuza LM. Distribution and density of bacteria in subtropical flooded rice growing areas in Brazil. Braz. J. Biol, 65:503-511, 2005. |
[21] | Scavino AF, Menes JLF, Tarlera S. Bacterial community analysis of the water surface layer from a rice-planted and an unplanted flooded field. Braz. J. Microbiol, 41: 411-419, 2010. |
[22] | Barreiros L, Manaia CM, Nunes OC. Bacterial diversity and bioaugmentation in floodwater of a paddy field in the presence of the herbicide molinate. Biodegradation, 22:445–460, 2011. |
[23] | Sosbai Arroz irrigado: recomendações técnicas da pesquisa para o sul do Brasil. Sociedade sul-brasileira de arroz irrigado. Pelotas: XXVII reunião da cultura do arroz, 1: 13-154, 2010. |
[24] | Rhee HP, Yoon CG, Son YK, Jang JH. Quantitative risk assessment for reclaimed wastewater irrigation on paddy rice field in Korea. Paddy Water Environ, 9:183-191, 2010. |
[25] | Furtado DF, Luca SJ. Técnicas de cultivo de arroz irrigado: Relação com a qualidade de água, protozoários e diversidade fitoplanctônica. R. Bras. Eng. Agríc. Ambiental, 7: 165-172, 2003. |
[26] | Macedo VRMM, Menezes VG. Influência dos sistemas de produção e manejo no uso da água pela planta de arroz. In Universidade de Passo Fundo (eds), Uso da água na agricultura, Passo Fundo DC. pp. 1-20, 2004. |
[27] | Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST. Bergey’s manual of determinate bacteriology. Baltimore, William and Wilkins, 1994. |
[28] | Tedesco MJ, Gianello C, Bissani CA, Bohnen H, Volkweiss SJ. Análises de solo, plantas e outros materiais. Boletim Técnico de solo da Universidade Federal do Rio Grande do Sul, 1995. |
[29] | Magurran AE. Measuring biological diversity. Oxford, Blackwell, 2004. |
[30] | Rohlf FJ. NTSYS 2.1: numerical taxonomic and multivariate analysis system. Exeter Software, NY, 2000.) |
[31] | Jongman RHG, Ter Braak CJF, Van Tongeren OFR. Data analysis in community and landscape ecology. Cambridge: Cambridge University Press, 1995. |
[32] | Legendre P, Legendre L. Numerical Ecology: developments in environmental modelling. Amsterdam, Elsevier, 1998. |
[33] | Ter Braak CJF. Ordination In: Jongman, R. H. G., C. J. F. Ter braak & O. F. R Van Tongeren (eds), Data analysis in community and landscape ecology. Cambrigde, Massachusetts DC, 1995. |
[34] | McCune B, Mefford MJ. PC-ORD for Windows: multivariate analysis of ecological data, version 3.17. MjM Software, Gleneden Beach, Oregon, U.S.A, 1997. |
[35] | Rahel FJ. The hierarchical nature of community persistence: a problem of scale. Am. Nat, 136: 328-344, 1990. |
[36] | Nakayama N, Okabe A, Toyota K, Kimura M, Asakawa S. Phylogenetic distribution of bacteria isolated from the floodwater of a Japanese paddy field. Soil Sci. Plant. Nutr, 52: 305-312, 2006. |
[37] | Asaki N, Ishihara R, Nakajima Y, Kimura M, Asakawa S. Succession and phylogenetic composition of eubacterial communities in rice straw during decomposition on the surface of paddy field soil. Soil Sci. Plant Nutr, 53: 56–65, 2007. |
[38] | Theunis W, Aguda RM, Cruz WT, Decock C, Peferoen M, Lambert B, Bottrell D, Gould FL, Litsinger JA, Cohen MB. Bacillus thuringiensis isolates from the Philippines: habitat distribution, dendotoxin diversity and toxicity to tem borers (Lepidoptera: Pyralidae). Bull. Entomol. Res, 88:335-342, 1998. |
[39] | Yannarell AC, Triplett EW. Geographic and environmental sources of variation in lake bacterial community composition. Appl. Environ. Microbiol, 71:227–239, 2005. |
[40] | Lindstrom ES, Kamst-Van-Agterveld MP, Zwart G. Distribution of typical freshwater bacterial groups is associated with pH, temperature, and lake water retention time. Appl. Environ. Microbiol, 71:8201–8206, 2005. |
[41] | Methe BA, Zehr JP. Diversity of bacterial communities in Adirondack lakes: do species assemblages reflect lake water chemistry? Hydrobiologia, 401:77–96, 1999. |
[42] | Muylaert K, Gucht K, Vloemans N, Meester L, Gillis MV. Relationship between bacterial community composition and bottom-up versus top-down variables in four eutrophic shallow lakes. Appl. Environ. Microbiol, 3: 4740–4750, 2002. |
[43] | Percent SF, Frischer ME, Vescio PA, Duffy EB, Milano V, McLellan M, Stevens BMB, Charles W, Bauer SA. Nierzwicki-Bacterial community structure of acid-impacted lakes: what controls diversity? Appl. Environ. Microbiol, 74: 1856–1868, 2008. |
[44] | Akmal M, Xu J. Microbial biomass and bacterial community changes by pb contamination in acidic soil. J. Agr. Biol. Sci, 1:30-37, 2009. |
[45] | Gough L, Osenberg CW, Gross KL, Collins SL. Fertilization effects on species density and primary productivity in herbaceous plant communities. Oikos, 89: 428–439, 2000. |
[46] | Suding NS, Collins SL, Gough L, Clark C, Cleland EA, Gross KL, Milchunas DG, Pennings S. Functional-and abundance-based mechanisms explain diversity loss due to N fertilization. PNAS, 102: 4387–4392, 2005. |
[47] | Gilliam F S. Response of the herbaceous layer of forest ecosystems to excess nitrogen deposition. J. Ecol, 94:1176–1191, 2006. |
[48] | Treseder KK. Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol Lett, 11:1 111–1120, 2008. |
[49] | Ruppel S, Torsvik V, Daae FL, Ovreas L, Rühlmann J. Nitrogen availability decreases prokaryotic diversity in sandy soils. Biol. Fertil. Soils, 43: 449-459, 2006. |
[50] | Zeglin L, Sturova M, Sinsabaugh RL, Coolins SL. Microbial responses to nitrogen addition in three contrasting grassland ecosystems. Oecologia, 154:349–359, 2007. |
[51] | Lauber CL, Hamady M, Knight R, Fierer N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol, 75: 5111–5120, 2009. |
[52] | Ramirez KS, Christian LK, Rob B, Mark AFN. Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems. Ecology, 91:3463–3470, 2010. |
[53] | Chróst R, Adamczewski T, Kalinowska A. Inorganic phosphorus and nitrogen modify composition and diversity of microbial communities in water of mesotropic lake. Pol. J. Microbiol, 58:77-90, 2009.99. |