[1] | Y.C. Yang, E. Chang, Influence of residual stress on bonding strength and fracture of plasma-sprayed hydroxyapatite coatings on Ti-6Al-4V substrate, Biomaterials. 22 (2001) 1827–1836. doi:10.1016/S0142-9612(00)00364-1. |
[2] | A. Laamouri, H. Sidhom, C. Braham, Evaluation of residual stress relaxation and its effect on fatigue strength of AISI 316L stainless steel ground surfaces: Experimental and numerical approaches, Int. J. Fatigue. 48 (2013) 109–121. doi:10.1016/j.ijfatigue.2012.10.008. |
[3] | J. Toribio, Residual Stress Effects in Stress-Corrosion Cracking, J. Mater. Eng. Perform. 7 (1998) 173–182. doi:10.1361/105994998770347891. |
[4] | W.G. Mao, J. Wan, C.Y. Dai, J. Ding, Y. Zhang, Y.C. Zhou, C. Lu, Evaluation of microhardness, fracture toughness and residual stress in a thermal barrier coating system: A modified Vickers indentation technique, Surf. Coatings Technol. 206 (2012) 4455–4461. doi:10.1016/j.surfcoat.2012.02.060. |
[5] | A.K. Mainjot, G.S. Schajer, A.J. Vanheusden, M.J. Sadoun, Residual stress measurement in veneering ceramic by hole-drilling, Dent. Mater. 27 (2011) 439–444. doi:10.1016/j.dental.2010.12.002. |
[6] | G. Montay, A. Cherouat, J. Lu, N. Baradel, L. Bianchi, Development of the high-precision incremental-step hole-drilling method for the study of residual stress in multi-layer materials: Influence of temperature and substrate on ZrO2-Y2O3 8 wt% coatings, Surf. Coatings Technol. 155 (2002) 152–160. doi:10.1016/S0257-8972(01)01718-2. |
[7] | W. Cheng, Iain Finnie, Residual Stress Measurement and the Slitting Method, 2007. doi:10.1007/978-0-387-39030-7. |
[8] | K. Masláková, F. Trebuňa, P. Frankovský, M. Binda, Applications of the strain gauge for determination of residual stresses using Ring-core method, Procedia Eng. 48 (2012) 396–401. doi:10.1016/j.proeng.2012.09.531. |
[9] | M. Mahmoodi, M. Sedighi, D.A. Tanner, Investigation of through thickness residual stress distribution in equal channel angular rolled Al 5083 alloy by layer removal technique and X-ray diffraction, Mater. Des. 40 (2012) 516–520. doi:10.1016/j.matdes.2012.03.029. |
[10] | E. Hu, Y. He, Y. Chen, Experimental study on the surface stress measurement with Rayleigh wave detection technique, Appl. Acoust. 70 (2009) 356–360. doi:10.1016/j.apacoust.2008.03.002. |
[11] | J. Gauthier, T.W. Krause, D.L. Atherton, Measurement of residual stress in steel using the magnetic Barkhausen noise technique, NDT E Int. 31 (1998) 23–31. doi:10.1016/S0963-8695(97)00023-6. |
[12] | A. Bolshakov, W.C. Oliver, G.M. Pharr, Influences of stress on the measurement of mechanical properties using nanoindentation: Part I. Experimental studies in an aluminum alloy, J. Mater. Res. 11 (1996) 752–759. doi:10.1557/JMR.1996.0091. |
[13] | A. Bolshakov, G.M. Pharr, Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques, J. Mater. Res. 13 (1997) 1049–1058. doi:10.1557/JMR.1998.0146. |
[14] | S. Suresh, A.E. Giannakopoulos, A new method for estimating residual stresses by instrumented sharp indentation, Acta Mater. 46 (1998) 5755–5767. doi:10.1016/S1359-6454(98)00226-2. |
[15] | S. Carlsson, P.L. Larsson, On the determination of residual stress and strain fields by sharp indentation testing.: Part II: experimental investigation, Acta Mater. 49 (2001) 2193–2203. doi:http://dx.doi.org/10.1016/S1359-6454(01)00123-9. |
[16] | S. Carlsson, P.L. Larsson, On the determination of residual stress and strain fields by sharp indentation testing. Part I: Theoretical and numerical analysis, Acta Mater. 49 (2001) 2179–2191. doi:10.1016/S1359-6454(01)00122-7. |
[17] | Y.-H. Lee, D. Kwon, Measurement of residual-stress effect by nanoindentation on elastically strained (100) W, Scr. Mater. 49 (2003) 459–465. doi:10.1016/s1359-6462(03)00290-2. |
[18] | Y.H. Lee, D. Kwon, Estimation of biaxial surface stress by instrumented indentation with sharp indenters, Acta Mater. 52 (2004) 1555–1563. doi:10.1016/j.actamat.2003.12.006. |
[19] | W.C. Oliver, G. M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992) 1564–1583. doi:10.1557/JMR.1992.1564. |
[20] | B. Taljat, G.M. Pharr, Measurement of Residual Stresses by Load and Depth Sensing Spherical Indentation, MRS Proc. 594 (2000) 2091–2102. doi:10.1557/proc-594-519. |
[21] | J.G. Swadener, B. Taljat, G.M. Pharr, Measurement of residual stress by load and depth sensing indentation with spherical indenters, J. Mater. Res. 16 (2001) 2091–2102. doi:10.1557/jmr.2001.0286. |
[22] | G. Peng, Y. Feng, Y. Huan, T. Zhang, Y. Ma, Z. Lu, Spherical indentation method for estimating equibiaxial residual stress and elastic–plastic properties of metals simultaneously, J. Mater. Res. 33 (2018) 884–897. doi:10.1557/jmr.2018.57. |
[23] | D. Liu, Q. Gong, J. Lei, B. Zhang, L. Shen, Y. He, A novel method for determining surface residual stress components and their directions in spherical indentation, J. Mater. Res. 30 (2015) 1078–1089. doi:10.1557/jmr.2015.87. |
[24] | L. Shen, Y. He, D. Liu, M. Wang, J. Lei, Prediction of residual stress components and their directions from pile-up morphology: An experimental study, J. Mater. Res. 31 (2016) 2392–2397. doi:10.1557/jmr.2016.270. |
[25] | B.L. Liu, W.X. Weng, Q. Li, Y.M. Wang, X. Qiao, Influence of pores on mechanical properties of plasma sprayed coatings: Case study of YSZ thermal barrier coatings, Ceram. Int. 44 (2018) 21564–21577. doi:10.1016/j.ceramint.2018.08.220. |
[26] | L.N. Zhu, B.S. Xu, H.D. Wang, C.B. Wang, Measurement of residual stress in quenched 1045 steel by the nanoindentation method, Mater. Charact. 61 (2010) 1359–1362. doi:10.1016/j.matchar.2010.09.006. |
[27] | L.N. Zhu, B.S. Xu, H.D. Wang, C.B. Wang, Measurement of residual stresses using nanoindentation method, Crit. Rev. Solid State Mater. Sci. 40 (2014) 77–89. doi:10.1080/10408436.2014.940442. |