[1] | E. Mathieu. Memoire sure le Mouvement Vibratiore d’une Membrane de Forme Elliptique, J. Math. 13, 137-203, 1868. |
[2] | A. Nayfeh, D. T. Mook. Nonlinear Oscillations. Wiley, New York, 1979. |
[3] | R. H. Rand. Lecture notes on nonlinear vibrations (version 53). Available fromhttp//audiophile.tam.cornell.edu/randdocs/; 2012. |
[4] | J. J. Stoker. Nonlinear vibrations in mechanical and electrical systems. New York; 1950. |
[5] | M. E. Bauer. Existence and stability of patterns arising from square wave forcing of the damped Mathieu equation. Senior honors Thesis, Department of Mathematics, Duke University, 2008. Available from http//www.stanford.edu/̴mebauer/pdf/pruv_thesis.pdf. |
[6] | T. Insperger, G. Stepan. Stability of the damped Mathieu equation with time delay. Journal of Dynamic Systems, Measurement and control 125, 166-171, 2003. |
[7] | T. M. Morrison, R. H. Rand. 2:1 Resonance in the delayed nonlinear Mathieu equation. Nonlinear Dyn 50, 341-352, 2007. |
[8] | D.V. Ramani, R. H. Rand, W. L. Keith. A bifurcation analysis of the quadratically damped Mathieu equation and its applications to the dynamics of Submarine Towed-Array Lifting Devices. Available fromhttp//audiophile.tam.cornell.edu/randpdf/udt01.pdf. |
[9] | R. H. Rand, S. M. Sah, M. K. Suchorsky. Fractional Mathieu equation. Commun Nonlinear Sci Numer Simulat 15, 3254-3262, 2010. |
[10] | A. Ebaid, D. M. M. Elsayeed, M. D. Aljoufi. Fractional Calculus Model for Damped Mathieu Equation: Approximate Analytical Solution. J. Appl. Math. Sci. 6(82), 4075-4080, 2012. |
[11] | H. M. Srivasta, R.K. Saxena. Operators of fractional integration and their applications, Appl. Math. Comput., 118, 1-52, 2001. |
[12] | R. L. Bagley, P. J. Torvik. A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheol., 27, 201-210, 1983. |
[13] | R. Hilfer (ED). Applications of Fractional Calculus in Physics, Applications of Fractional Calculus in Physics, 2000. |
[14] | I. Podlubny. Fractional Differential Equations, Academic press, San Diego, California, 1999. |
[15] | B. Ross. A brief history and exposition of the fundamental theory of fractional calculus, In: Fractional calculus and its applications. Springer lecture notes in mathematics, 57, 1-36, 1975. |
[16] | P. Pue-on and N. Viriyapong. Modified Adomian Decomposition Method for Solving Particular Third-Order Ordinary Differential Equations. Applied Mathematical Sciences 6(30), 1463-1469, 2012. |
[17] | R. Montazeri. A Concrete Application of Adomian Decomposition Method. Int. J. Contemp. Math. Sciences 7(24), 1185-1192, 2012. |
[18] | E. Celik, M. Bayram and T. Yeloglu. Solution of Differential-Algebraic Equations(DAEs) by Adomian Decomposition Method. International Journal Pure & Applied Mathematical Sciences 3(1) , 93-100, 2006. |
[19] | T. R. Ramesh Rao. The use of Adomian Decomposition Method for Solving Generalised Riccati Differential Equations. Proc. 6th IMT-GT Conference on Mathematics, Statistics and its Applications (ICMSA2010) Universiti Tunku Abdul Rahman, Kuala Lumpur, Malaysia 2010. |
[20] | S. Somali and G. Gokemen. Adomian Decomposition Method for Nonlinear Sturm-Liouville Problems. Surveys in Mathematics and its Application 2, 11-20, 2007. |
[21] | H. Fatoorehchi and H. Abolghasemi. Adomian Decomposition Method to Study Mass Transfer from a Horizontal Flat Plate subject to Laminar Fluid Flow. Advances in Natural and Applied Sciences 5(1), 26-33, 2011. |
[22] | Q. Yu, F. Liu, V. Anh and I. Turne. Solving linear and non-linear space-time fractional reaction-diffusion equations by the Adomian Decomposition Method. International Journal for Numerical Methods in engineering 78, 138-158, 2008. |
[23] | S. Pamuk. An application for linear and nonlinear equations by Adomian Decomposition Method. Applied Mathematics and Computation 163, 89-96, 2005. |
[24] | A. M. Wazwaz and A. Gorguis. An analytic study of Fisher’s equation by Adomian Decomposition Method. Applied Mathematics and Computation 154, 609-620, 2004. |
[25] | E. A. Ibijola, B. J. Adegboyegun, O. Y. Halid. On Adomian Decomposition Method (ADM) for Numerical Solution of Ordinary Differential Equations. Advances in Natural and Applied Sciences 2(3), 165-169, 2008. |
[26] | G. Adomian. Solutions of nonlinear PDE. Applied Mathematical Letters 11(13), 121-123, 1998. |
[27] | G. Adomian. Solving Frontier Problems of Physics: The Decomposition Method. Kluwer Academic Publishers, Boston 1994. |
[28] | M. R. Roussel. Delay-differential equations. Available from http://people.uleth.ca/~roussel/nld/delay.pdf. |
[29] | C. E. Falbo. Some Elementary Meyhods for Solving Functional Differential Equations. Available from http://www.mathfile.net/hicstat_FDE.pdf. |
[30] | T. K. Nagy. Stability analysis of delay-differential equations by the method of steps and inverse Laplace transform, Differential Equations and Dynamical Systems 17(1&2), 185-200, 2009. |
[31] | A. H. M. Abdelrazec. Adomian Decomposition Method: Convergence Analysis and Numerical Approximations. M.Sc Thesis McMaster University, 2008. Available from http://dmpeli.math.mcmaster.ca/PaperBank/ThesisAhmed.pdf. |
[32] | T. Mavoungou and Y. Cherruault. convergence of adomian’s method and applications to nonlinear partial differential equations, kybernetes 21(6), 13-25, 1992. |