[1] | V. Hessel, H. Löwe, F. Schönfeld , "Micromixers—a review on passive and active mixing principles", Chemical Engineering Science, 60 (2005) 2479 – 2501. |
[2] | E. A. Mansur, Y. Mingxing, W. Yundong, D.Youyuan, "A State-of-the-Art Review of Mixing in Microfluidic Mixers", Chinese Journal of Chemical Engineering, 16(4) (2008) 503-516. |
[3] | N.T. Nguyen , Z. Wu, "Micromixers—a review", J. Micromech. Microeng., 15 (2005) R1–R16. |
[4] | H. Bockhorn, D. Mewes, W. Peukert, H.-J.Warnecke, "Micro and Macro Mixing: Analysis, Simulation and Numerical Calculation (Heat and Mass Transfer)", Springer (2010) ISBN: 3642045480, 348 pages. |
[5] | Z. Yang et al., "Ultrasonic micromixer for microfluidic systems", Sensors and Actuators A 93 (2001) 266–272. |
[6] | R.H. Liu et al., "Hybridization enhancement using cavitation microstreaming", Analytical Chemistry, 75 (8) (2003) 1911–1917. |
[7] | M.H. Oddy, J.G. Santiago, J.C. Mikkelsen, "Electrokinetic instability micromixing", Analytical Chemistry 73 (24) (2001) 5822–5832. |
[8] | I Glasgow, N. Aubry, "Enhancement of microfluidic mixing using time pulsing", Lab on a Chip 3 (2003) 114–120. |
[9] | X. Niu, Y.-K. Lee, "Efficient spatial-temporal chaotic mixing in micro-channels" Journal of Micromechanics and Microengineering 13 (2003) 454–462. |
[10] | S. Qian, H.H. Bau, "A chaotic electroosmotic stirrer", Analytical Chemistry 74 (15) (2002) 3616–3625. |
[11] | A. Neilda, T. W. Nga, G. J. Sheardb, et al., "Swirl mixing at microfluidic junctions due to low frequency side channel fluidic perturbation", Sensors and Actuators B 150 (2010) 811–818. |
[12] | P. Woias, K. Hauser, E. Yacoub-George (Eds.), "An active silicon micromixer for µ-TAS applications" In: van den Berg, A., Olthuis, W., Bergveld, P. (Eds.) Micro Total Analysis Systems Kluwer Academic Publishers, Dordrecht (2000) pp. 277–282. |
[13] | J. Voldman, M.L. Gray, M.A. Schmidt, "Liquid mixing studies with an integrated mixer/valve" In: Harrison, J., van den Berg, A. (Eds.) Micro Total Analysis Systems, Kluwer Academic Publishers, Dordrecht (1998) pp. 181–184. |
[14] | L.S. Jang, S.H. Chao, M. R. Holl, D. R. Meldrum, "Resonant mode-hopping micromixing", Sensors and Actuators A, 138 (2007), 179–186. |
[15] | Y. Ma, C.P. Sun, M. Fields, Yang Li, et al, "An unsteady microfluidic T-form mixer perturbed by hydrodynamic pressure", J. Micromech. Microeng. 18 (2008) 045015 (14pp). |
[16] | A.E. Kamholz et al., "Quantitative analysis of molecular interactive in microfluidic channel: the T-sensor", Anal. Chem. 71 (1999) 5340–7. |
[17] | A.E. Kamholz and P. Yager, "Molecular diffusive scaling laws in pressure-driven microfluidic channels: deviation from one-dimensional Einstein approximations", Sensors and Actuators B 82 (2002) 117–121. |
[18] | R.F. Ismagilov et al., "Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannel", Appl. Phys. Lett., 76 (2000) 2376–2378. |
[19] | S. H. Wong, M.C.L. Ward, C.W. Wharton, "Micro T-mixer as a rapid mixing micromixer", Sensors and Actuators B 100 (2004) 359–379. |
[20] | S.P. Sullivan, B.S. Akpa et al., "Simulation of miscible diffusive mixing in microchannels", Sensors and Actuators B 123 (2007) 1142–1152. |
[21] | M.J. Swickratha, S.D. Burnsa, G.E. Wnekb, "Modulating passive micromixing in 2-D microfluidic devices via discontinuities in surface energy", Sensors and Actuators B 140 (2009) 656–662. |
[22] | S. Hossain, M.A. Ansari, K.Y. Kim, "Evaluation of the mixing performance of three passive micromixers", Chemical Engineering Journal 150 (2009) 492–501. |
[23] | C. K. Chung, T. R. Shih, "Effect of geometry on fluid mixing of the rhombic micromixers", Microfluidics and Nanofluidics (2008) Volume 4, Number 5, 419-425. |
[24] | J. Branebjerg, P. Gravesen, J.P. Krog, C.R. Nielsen, "Fast mixing by lamination", Proc. MEMS 96, 9th IEEE Int. Workshop MicroElectromechanical System (San Diego, CA) (1996) pp 441–446. |
[25] | M. S. Munson, P. Yager, "Simple quantitative optical method for monitoring the extent of mixing applied to a novel microfluidic mixer", Anal. Chim. Acta (2004) 507, 63–71. |
[26] | T. Tofteberg, M. Skolimowski, E. Andreassen, O. Geschke, "A novel passive micromixer: lamination in a planar channel system", Microfluidics and Nanofluidics (2010) Volume 8, Number 2, 209-215. |
[27] | T.N.T. Nguyen, M.C. Kimb, J.S Park, N.E. Lee, "An effective passive microfluidic mixer utilizing chaotic advection", Sensors and Actuators B, 132 (2008) 172–181. |
[28] | S. H. Wong, P. Bryant, M. Ward, C. Wharton, "Investigation of mixing in a cross-shaped micromixer with static mixing elements for reaction kinetics studies", Sensors and Actuators B 95 (2003) 414–424. |
[29] | Z. Xua, C. Li, D. Vadilloc, X. Ruanb, X. Fub, "Numerical simulation on fluid mixing by effects of geometry in staggered oriented ridges micromixers", Sensors and Actuators B 153 (2011) 284–292. |
[30] | X. Fu, S. Liu , X. Ruan, H. Yang, "Research on staggered oriented ridges static micromixers", Sensors and Actuators B 114 (2006) 618–624. |
[31] | K. Malechaa, L.J. Golonkaa, J. Bałdygab et al., "Serpentine microfluidic mixer made in LTCC", Sensors and Actuators B 143 (2009) 400–413. |
[32] | Y. Du, Z. Zhang, C. Yim, M. Lin, X. Cao, "Evaluation of Floor-grooved Micromixers Using Concentration-channel Length Profiles", Micromachines (2010), 1, 19-33. |
[33] | T. R. Shih, C.K. Chung, "A high-efficiency planar micromixer with convection and diffusion mixing over a wide Reynolds number range", Microfluidic Nanofluidic (2008) 5:175–183. |
[34] | S.W. Lee, D.S. Kim, S.S. Lee, T.H. Kwon, "Split and recombination micromixer based on PDMS three-dimensional micro structure", The 13th International Conference on Solid-state Sensors, Actuators and Microsystems, Seoul, Korea, June 5-9 (2005) 1533-1536. |
[35] | S.W. Lee, D.S. Kim, S.S. Lee, T.H. Kwon, "A split and recombination micromixer fabricated in a PDMS three-dimensional structure", J. Micromech. Microeng. 16 (2006) 1067–1072. |
[36] | K. Ohkawa, T. Nakamotob, Y. Izukab, et al., "Flow and mixing characteristics of σ-type plate static mixer with splitting and inverse recombination", Chemical Engineering Research and Design 86 (2008) 1447–1453. |
[37] | S.W. Lee, S. S. Lee, "Rotation effect in split and recombination micromixing", Sensors and Actuators B 129 (2008) 364–371. |
[38] | W.F. Fanga, J.T. Yangb, "A novel microreactor with 3D rotating flow to boost fluid reaction and mixing of viscous fluids", Sensors and Actuators B 140 (2009) 629–642. |
[39] | Z. Chen, M.R. Bown, B. O. Sullivan, J. M. MacInnes, R.W. K. Allen, M. Mulder, M. Blom, R. van’t Oever, "Performance analysis of a folding flow micromixer", Microfluid Nanofluid (2009) 6:763–774. |
[40] | P. Garstecki, M.J. Fuerstman, M.A. Fischbach, S.K. Sia, G.M. Whitesides, "Mixing with bubbles: a practical technology for use with portable microfluidic devices", Lab on a Chip 6 (2006) 207-212, doi :10.1039/b510843h. |
[41] | N.T. Nguyen, "Micromixers: Fundamentals, Design and Fabrication", William Andrew, Norwich, NY, USA (2008). |