[1] | Papautsky, J. Brazzle, T. Ameel, A. B. Frazier, Laminar fluid behavior in microchannels using micropolar fluid theory. Sensors Actuators A Physical (1999) 73(1-2):101–108. |
[2] | J. J. Shu , Microscale heat transfer in a free jet against a plane surface. Superlattices Microstruct (2004) 35: 645–656. |
[3] | C. Eringen, Microcontinuum field theories II: fluent Media. Springer-Verlag, New York, Inc (2001). |
[4] | S. Srinivas, M. Kothandapani: The influence of heat and mass transfer on MHD peristaltic flow through a porous space with compliant walls, App. Math. Comp. 213 (2009) 197–208. |
[5] | Chien-Hsin: Magneto-hydrodynamic mixed convection of a power-law fluid past a stretching surface in the presence of thermal radiation and internal heat generation/absorption, Int. J. Non-Linear Mech. 44 (2009) 596 – 603. |
[6] | S. Srinivas, M. Kothandapani: The influence of heat and mass transfer on MHD peristaltic flow through a porous space with compliant walls, Appl. Math. Comp.213 (2009) 197–208 |
[7] | R. C. Chaudhary, Abhay Kumar Jha: Effects of chemical reactions on MHD micropolar fluid flow past a vertical plate in slip-flow regime, Appl. Math. Mech. -Engl. Ed., 2008, 29(9):1179–1194. |
[8] | Youn J. Kim: Heat and Mass Transfer in MHD Micropolar Flow Over a Vertical Moving Porous Plate in a Porous Medium, Transport in Porous Media 56: 17–37, 2004. |
[9] | Ishak , R. Nazar , I. Pop: MHD boundary-layer flow of a micropolar fluid past a wedge with variable wall temperature, Acta Mech 196, 75–86 (2008) |
[10] | Ishak, R. Nazar, I. Pop: Mixed convection stagnation point flow of a micropolar fluid towards a stretching sheet, Meccanica (2008) 43: 411–418. |
[11] | F. Ali, M. Norzieha, S. Sharidan, I. Khan, T. Hayat: New exact solutions of Stokes' second problem for an MHD second grade fluid in a porous space, Int. J. of Non-Linear Mech. In Press. |
[12] | Mostafa A.A. Mahmoud: Thermal radiation effects on MHD flow of a micropolar fluid over a stretching surface with variable thermal conductivity, Physica A 375 (2007) 401–410. |
[13] | M. Ezzat, A.A. El-Bary, S. Ezzat: Combined heat and mass transfer for unsteady MHD flow of perfect conducting micropolar fluid with thermal relaxation, Energy Conversion and Management, 52(2011) 934 – 945. |
[14] | Mustafa Turkyilmazoglu: Effects of uniform radial electric field on the MHD heat and fluid flow due to a rotating disk Original Research Article, Int. J. Eng. Sci., 51 (2012) 233 – 240. |
[15] | K. Das: Effect of chemical reaction and thermal radiation on heat and mass transfer flow of MHD micropolar fluid in a rotating frame of reference, International Journal of Heat and Mass Transfer, Int. J. Heat and Mass Trans., 54 (2011) 3505 – 3513. |
[16] | C. Eringen, Theory of thermo-stretch fuids and bubbly liquids. Int J Eng Sci (1990) 28: 133-143 |
[17] | M. Zakaria, Problem in electromagnetic free convection flow of a micropolar fluid with relaxation time through a porous medium. Appl. Math. Comp. 151 (2004) 601–613. |
[18] | M. Ezzat and M. Zakaria, Heat transfer with thermal relaxation to a perfectly conducting polar fluid, Heat Mass Transfer 41 (2005) 189. |
[19] | M. Zakaria, Magnetohydrodynamic unsteady free convection flow of a couple stress fluid with one relaxation time through a porous medium, J. Appl. Math. comp 146 (2003) 469. |
[20] | M. Ezzat, M. Zakaria, and M. Moursy, Magneto-hydrodynamic boundary layer flow past a stretching plate and heat transfer, J. Appl. Math. 1 (2004) 9. |
[21] | C. Eringen, Electrodynamics of microstretch and micropolar fluids. ARI (1998) 50: 169-179 |
[22] | H. Nayfeh, S. Nemat-Nasser, Electromagneto- thermoelastic plane waves in solids with thermal relaxation, J Applied Mech, March (1972)108-113. |
[23] | T. Buchukuri, R. Chichinadze, Two-dimensional problems of satationary flow of a noncompressible viscous fluid in the case of Oseens's linearlization, Georgian Mathematical Journal 1(1994), No. 3, 251-266 |
[24] | W.E. Olmstead, fundamental Oseen solution for the 2-dimensional flow of a micropolar fluid. Int. J. Engng. (1983) 21: 423-430. |
[25] | G.S. Guram, A.C. Smith, Stagnation flow of micropolar fluids with strong and weak interactions, Comput. Math. Appl. (1980) 6: 213–233. |
[26] | S.K. Jena, M.N. Mathur, Similarity solutions for laminar free convection flow of a thermo-micropolar fluid past a non-isothermal vertical flat plate, Int. J. Eng. Sci. (1981) 19: 1431–1439. |
[27] | G. Ahmadi, Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate, Int. J. Eng. Sci. (1976) 14: 639–646. |
[28] | J. Peddieson, An application of the micropolar fluid model to the calculation of turbulent shear flow, Int. J. Eng. Sci. (1972) 1010: 23–32. |
[29] | G. Honig, U. Hirdes, A method for the numerical inversion of Laplace transform. J. Comp. Appl. Math. 10 (1984) 113–132. |