[1] | L. C. N. Sanjeeviraja V. Swaminathan,. C., “Photoluminescence Studies on Nanocrystalline Tin Oxide Powder for Optoelectronic Devices.” Accessed: Apr. 19, 2025. [Online]. Available: http://article.sapub.org/10.5923.j.materials.20120202.02.html. |
[2] | G. Mendoza-Damián, F. Tzompantzi, R. Pérez-Hernández, R. Gómez, and A. Hernández-Gordillo, “Photocatalytic properties of boehmite–SnO2 composites for the degradation of phenol,” Catal. Today, vol. 266, pp. 82–89, May 2016, doi: 10.1016/j.cattod.2015.11.029. |
[3] | I. Buniyamin, R. M. Akhir, N. A. Asli, Z. Khusaimi, M. F. Malek, and M. R. Mahmood, “Nanotechnology Applications in Biomedical Systems,” Curr. Nanomater., vol. 7, no. 3, pp. 167–180, Aug. 2022, doi: 10.2174/2405461507666220301121135. |
[4] | C. K. Lim, Y. Wang, and L. Zhang, “Facile Formation of Hierarchical TiO2-SnO2 Nanocomposite Architecture for Efficient Dye- Sensitized Solar Cells”. |
[5] | M. P. Subramaniam, G. Arunachalam, R. Kandasamy, P. Veluswamy, and I. Hiroya, “Effect of pH and annealing temperature on the properties of tin oxide nanoparticles prepared by sol–gel method,” J. Mater. Sci. Mater. Electron., vol. 29, no. 1, pp. 658– 666, Jan. 2018, doi: 10.1007/s10854-017-7959-2. |
[6] | G. E. Patil, D. D. Kajale, V. B. Gaikwad, and G. H. Jain, “Preparation and characterization of SnO2 nanoparticles by hydrothermal route,” Int. Nano Lett., vol. 2, no. 1, p. 17, Jul. 2012, doi: 10.1186/2228-5326-2-17. |
[7] | F. Paraguay-Delgado et al., “Structural analysis and growing mechanisms for long SnO2 nanorods synthesized by spray pyrolysis,” Nanotechnology, vol. 16, no. 6, p. 688, Mar. 2005, doi: 10.1088/0957-4484/16/6/011. |
[8] | S. V. Nagirnyak, V. A. Lutz, T. A. Dontsova, and I. M. Astrelin, “Synthesis and Characterization of Tin(IV) Oxide Obtained by Chemical Vapor Deposition Method,” Nanoscale Res. Lett., vol. 11, no. 1, p. 343, Dec. 2016, doi: 10.1186/s11671-016-1547-x. |
[9] | M. Kumar, A. Mehta, A. Mishra, J. Singh, M. Rawat, and S. Basu, “Biosynthesis of tin oxide nanoparticles using Psidium Guajava leave extract for photocatalytic dye degradation under sunlight,” Mater. Lett., vol. 215, pp. 121–124, Mar. 2018, doi: 10.1016/j.matlet.2017.12.074. |
[10] | G. Elango, S. M. Kumaran, S. S. Kumar, S. Muthuraja, and S. M. Roopan, “Green synthesis of SnO2 nanoparticles and its photocatalytic activity of phenolsulfonphthalein dye,” Spectrochim. Acta. A. Mol. Biomol. Spectrosc., vol. 145, pp. 176–180, Jun. 2015, doi: 10.1016/j.saa.2015.03.033. |
[11] | F. K. Alsammarraie, W. Wang, P. Zhou, A. Mustapha, and M. Lin, “Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities,” Colloids Surf. B Biointerfaces, vol. 171, pp. 398–405, Nov. 2018, doi: 10.1016/j.colsurfb.2018.07.059. |
[12] | D. Horwat et al., “Chemistry, phase formation, and catalytic activity of thin palladiumcontaining oxide films synthesized by plasma-assisted physical vapor deposition,” Surf. Coat. Technol., vol. 205, pp. S171–S177, Jul. 2011, doi: 10.1016/j.surfcoat.2010.12.021. |
[13] | G. E. Hoag, J. B. Collins, J. L. Holcomb, J. R. Hoag, M. N. Nadagouda, and R. S. Varma, “Degradation of bromothymol blue by „greener‟nano-scale zero-valent iron synthesized using tea polyphenols,” J. Mater. Chem., vol. 19, no. 45, pp. 8671–8677, 2009. |
[14] | S. Ahmed and S. Ikram, “Silver nanoparticles: one pot green synthesis using Terminalia arjuna extract for biological application,” J NanomedNanotechnol, vol. 6, no. 4, pp. 1–6, 2015. |
[15] | H. S. Devi, M. A. Boda, M. A. Shah, S. Parveen, and A. H. Wani, “Green synthesis of iron oxide nanoparticles using Platanus orientalis leaf extract for antifungal activity,” Green Process. Synth., vol. 8, no. 1, pp. 38–45, Jan. 2019, doi: 10.1515/gps-2017-0145. |
[16] | N. Kataria and V. K. Garg, “Green synthesis of Fe3O4 nanoparticles loaded sawdust carbon for cadmium (II) removal from water: Regeneration and mechanism,” Chemosphere, vol. 208, pp. 818–828, Oct. 2018, doi: 10.1016/j.chemosphere.2018.06.022. |
[17] | M. Naghdi, M. Taheran, S. K. Brar, M. Verma, R. Y. Surampalli, and J. R. Valero, “Green and energy-efficient methods for the production of metallic nanoparticles,” Beilstein J. Nanotechnol., vol. 6, pp. 2354–2376, Dec. 2015, doi: 10.3762/bjnano.6.243. |
[18] | R. Mamatha et al., “Rapid synthesis of highly monodispersed silver nanoparticles from the leaves of Salvadora persica,” Mater. Lett., vol. 205, pp. 226–229, Oct. 2017, doi: 10.1016/j.matlet.2017.06.089. |
[19] | F. Arsiya, M. H. Sayadi, and S. Sobhani, “Green synthesis of palladium nanoparticles using Chlorella vulgaris,” Mater. Lett., vol. 186, pp. 113–115, 2017. |
[20] | B. T. Sone, A. Diallo, X. G. Fuku, A. Gurib-Fakim, and M. Maaza, “Biosynthesized CuO nano-platelets: physical properties & enhanced thermal conductivity nanofluidics,” Arab. J. Chem., vol. 13, no. 1, pp. 160–170, 2020. |
[21] | A. Sett, M. Gadewar, P. Sharma, M. Deka, and U. Bora, “Green synthesis of gold nanoparticles using aqueous extract of Dillenia indica,” Adv. Nat. Sci. Nanosci. Nanotechnol., vol. 7, no. 2, p. 025005, Apr. 2016, doi: 10.1088/2043-6262/7/2/025005. |
[22] | M. Can, “Green gold nanoparticles from plant-derived materials: an overview of the reaction synthesis types, conditions, and applications,” Rev. Chem. Eng., vol. 36, no. 7, pp. 859–877, Oct. 2020, doi: 10.1515/revce-2018-0051. |
[23] | Y. T. Gebreslassie and H. G. Gebretnsae, “Green and Cost-Effective Synthesis of Tin Oxide Nanoparticles: A Review on the Synthesis Methodologies, Mechanism of Formation, and Their Potential Applications,” Nanoscale Res. Lett., vol. 16, no. 1, p. 97, Dec. 2021, doi: 10.1186/s11671-021-03555-6. |
[24] | I. Buniyamin, R. Md Akhir, N. Asnida Asli, Z. Khusaimi, and M. Rusop Mahmood, “Biosynthesis of SnO2 nanoparticles by aqueous leaves extract of Aquilaria malaccensis (agarwood),” IOP Conf. Ser. Mater. Sci. Eng., vol. 1092, no. 1, p. 012070, Mar. 2021, doi: 10.1088/1757-899X/1092/1/012070. |
[25] | S. Matussin, M. H. Harunsani, A. L. Tan, and M. M. Khan, “Plant-Extract-Mediated SnO2 Nanoparticles: Synthesis and Applications,” ACS Sustain. Chem. Eng., vol. 8, no. 8, pp. 3040–3054, Mar. 2020, doi: 10.1021/acssuschemeng.9b06398. |
[26] | T. R. Binadi, P. Mishra, B. R. Poudel, and S. K. Gautam, “Green Synthesis of Tin Oxide Nanoparticles using Psidium guajava Leaves Extract and its Applications in Antibacterial and Antioxidant Activities,” J. Nepal Chem. Soc., vol. 45, no. 1, pp. 133– 142, Jan. 2025, doi: 10.3126/jncs.v45i1.74493. |
[27] | V. Agrahari et al., “Effect of Mn doping on structural, optical and magnetic properties of SnO2 nanoparticles,” J. Mater. Sci. Mater. Electron., vol. 26, no. 12, pp. 9571–9582, Dec. 2015, doi: 10.1007/s10854-015-3620-0. |
[28] | A. S. Ahmed, M. Shafeeq M., M. L. Singla, S. Tabassum, A. H. Naqvi, and A. Azam, “Band gap narrowing and fluorescence properties of nickel doped SnO2 nanoparticles,” J. Lumin., vol. 131, no. 1, pp. 1–6, Jan. 2011, doi: 10.1016/j.jlumin.2010.07.017. |
[29] | S. Govindasamy et al., “Synthesis of tin oxide nanoparticles by chemical and biological methods and their applications in high performance supercapacitor electrode, antibacterial and antifungal activity,” Phys. Scr., vol. 99, no. 7, p. 075042, Jul. 2024, doi: 10.1088/1402-4896/ad5770. |
[30] | J. Jepngetich, S. A. Opiyo, P. W. Njoroge, and S. Kiprotich, “Effects of Ag Doping Concentrations on Structural and Optical Properties of Citrus Reticulata Capped ZnO Nanoparticles,” 2025, Accessed: May 17, 2025. [Online]. Available: https://repository.mut.ac.ke/xmlui/handle/123456789/6515. |
[31] | A. S. Ahmed, M. Shafeeq M., M. L. Singla, S. Tabassum, A. H. Naqvi, and A. Azam, “Band gap narrowing and fluorescence properties of nickel doped SnO2 nanoparticles,” J. Lumin., vol. 131, no. 1, pp. 1–6, Jan. 2011, doi: 10.1016/j.jlumin.2010.07.017. |
[32] | T. R. Binadi, P. Mishra, B. R. Poudel, and S. K. Gautam, J. Nepal Chem. Soc., vol. 45, no. 1, pp. 133–142, Jan. 2025, doi: 10.3126/jncs.v45i1.74493. |
[33] | A. Doyan, Susilawati, Y. D. Imawanti, E. R. Gunawan, and M. Taufik, “Characterization Thin Film Nano Particle of Aluminum Tin Oxide (AlTO) as Touch Screen,” J. Phys. Conf. Ser., vol. 1097, no. 1, p. 012009, Sep. 2018, doi: 10.1088/17426596/1097/1/012009. |
[34] | R. D. Thankaian, M. Muthukrishnan, S. M. K. Thiagamani, S. Siengchin, and S. M. Rangappa, “Impact of metal doping and co-doping on the electrical and optical behavior of tin oxide nanoparticles,” Nanomater. Energy, vol. 11, no. 3–4, pp. 55–66, Jul. 2022, doi: 10.1680/jnaen.23.00010. |
[35] | D. Furka et al., “Enhancing Photocatalytic Efficiency Through Morphology and Band Gap Tuning in Gallium-doped Zinc Oxide Nanoparticles,” ChemNanoMat, p. e202400665, Mar. 2025, doi: 10.1002/cnma.202400665. |
[36] | S. Kiprotich, M. O. Onani, and F. B. Dejene, “High luminescent L -cysteine capped CdTe quantum dots prepared at different reaction times,” Phys. B Condens. Matter, vol. 535, pp. 202–210, Apr. 2018, doi: 10.1016/j.physb.2017.07.037. |
[37] | S. Sagadevan, K. Pal, Z. Z. Chowdhury, and M. E. Hoque, “Structural, dielectric and optical investigation of chemically synthesized Ag-doped ZnO nanoparticles composites,” J. Sol-Gel Sci. Technol., vol. 83, no. 2, pp. 394–404, Aug. 2017, doi: 10.1007/s10971-017-4418-8. |
[38] | J. Jepngetich, P. W. Njoroge, S. Opiyo, and S. Kiprotich, “synthesis and characterization of ag-zno using citrus reticulata <i/> peel extract,” Mater. Res. Express, May 2025, doi: 10.1088/2053-1591/adda91. |
[39] | K. Bett and S. Kiprotich, “Effects of Stirring Speed of Precursor Solution on the Structural Optical and Morphological Properties of ZnO Al Ga CoDoped Nanoparticles Synthesized via a Facile Sol Gel Technique,” 2024, Accessed: May 07, 2025. [Online]. Available: https://idl-bnc-idrc.dspacedirect.org/bitstreams/f20815b8-0713-4f7f-832bde87cdf7d197/download. |
[40] | S. Suthakaran, S. Dhanapandian, N. Krishnakumar, and N. Ponpandian, “Hydrothermal synthesis of surfactant assisted Zn doped SnO2 nanoparticles with enhanced photocatalytic performance and energy storage performance,” J. Phys. Chem. Solids, vol. 141, p. 109407, Jun. 2020, doi: 10.1016/j.jpcs.2020.109407. |
[41] | L. Ran, D. Zhao, X. Gao, and L. Yin, “Highly crystalline Ti-doped SnO2 hollow structured photocatalyst with enhanced photocatalytic activity for degradation of organic dyes,” CrystEngComm, vol. 17, no. 22, pp. 4225–4237, 2015, doi: 10.1039/C5CE00184F. |
[42] | P. Baraneedharan, S. Imran Hussain, V. P. Dinesh, C. Siva, P. Biji, and M. Sivakumar, “Lattice doped Zn–SnO2 nanospheres: A systematic exploration of dopant ion effects on structural, optical, and enhanced gas sensing properties,” Appl. Surf. Sci., vol. 357, pp. 1511–1521, Dec. 2015, doi: 10.1016/j.apsusc.2015.09.257. |
[43] | N. P. M, R. Paulraj, R. P, and V. N, “One step synthesis of tin oxide nanomaterials and their sintering effect in dye degrdation,” Optik, vol. 135, pp. 434–445, Apr. 2017, doi: 10.1016/j.ijleo.2017.01.068. |
[44] | S. Suthakaran, S. Dhanapandian, N. Krishnakumar, and N. Ponpandian, “Hydrothermal synthesis of SnO2 nanoparticles and its photocatalytic degradation of methyl violet and electrochemical performance,” Mater. Res. Express, vol. 6, no. 8, p. 0850i3, Jun. 2019, doi: 10.1088/2053-1591/ab29c2. |
[45] | A. H.-T. Nguyen, M.-C. Nguyen, J. Choi, S. Han, J. Kim, and R. Choi, “Electrical performance enhancement of p-type tin oxide channel thin film transistor using aluminum doping,” Thin Solid Films, vol. 641, pp. 24–27, Nov. 2017, doi: 10.1016/j.tsf.2017.01.032. |
[46] | R. Adnan, N. A. Razana, I. A. Rahman, and M. A. Farrukh, “Synthesis and Characterization of High Surface Area Tin Oxide Nanoparticles via the Sol-Gel Method as a Catalyst for the Hydrogenation of Styrene,” J. Chin. Chem. Soc., vol. 57, no. 2, pp. 222–229, Apr. 2010, doi: 10.1002/jccs.201000034. |
[47] | Mahfooz-ur-Rehman et al., “Fabrication of Titanium–Tin Oxide Nanocomposite with Enhanced Adsorption and Antimicrobial Applications,” J. Chem. Eng. Data, vol. 64, no. 6, pp. 2436–2444, Jun. 2019, doi: 10.1021/acs.jced.8b01243. |
[48] | P. Saha, Md. Mahiuddin, A. B. M. N. Islam, and B. Ochiai, “Biogenic Synthesis and Catalytic Efficacy of Silver Nanoparticles Based on Peel Extracts of Citrus macroptera Fruit,” ACS Omega, vol. 6, no. 28, pp. 18260–18268, Jul. 2021, doi: 10.1021/acsomega.1c02149. |
[49] | S. Haq, W. Rehman, M. Waseem, M. Rehman, and K. H. Shah, “Modeling, Thermodynamic Study and Sorption Mechanism of Cadmium Ions onto Isopropyl Alcohol Mediated Tin Dioxide Nanoparticles,” J. Inorg. Organomet. Polym. Mater., vol. 30, no. 4, pp. 1197–1205, Apr. 2020, doi: 10.1007/s10904-019-01256-3. |