[1] | Abbas, M. A., Kwan, W. H., Samsudin, M. H., Hai, T. K., 2024, Optimising Factors for the Production of Amorphous Rice Husk Ash via Combustion Process for Sustainable Construction: A Review. J. Adv. Res. Appl. Mech., 120(1), 50-61. |
[2] | Adamopoulos, F. G., Vouvoudi, E. C., Pavlidou, E., Achilias, D. S., Karapanagiotis, I., 2021, TEOS-based superhydrophobic coating for the protection of stone-built cultural heritage. Coatings, 11(2), 135. |
[3] | Ajeel, S. A., Sukkar, K. A., Zedin, N. K., 2021, The chemical extraction process for producing high-purity nanosilica from Iraqi rice husk. Eng. Techn. J., 39(1A), 56-63. |
[4] | Amarasinghe, I., Hong, Y., Stewart, R. A., 2024, Development of a material circularity evaluation framework for building construction projects. J. Clean. Prod., 436, 140562. |
[5] | Amutha, K., Ravibaskar, R., Sivakumar, G., 2010, Extraction, Synthesis, and Characterization of Nanosilica from Rice Husk Ash. Int. J. Nanotechnol. Appl., 4(1), 61-66. |
[6] | Ayswarya, E. P., Nair, A. B., Thachil, E. T., 2021, A comparative study of mechanical, dynamic mechanical and thermal properties of rice husk ash, modified rice husk ash and nanosilica-filled epoxy composites. Mater. Today Proc., 47, 5351-5357. |
[7] | Azat, S., Korobeinyk, A. V., Moustakas, K., Inglezakis, V. J., 2019, Sustainable production of pure silica from rice husk waste in Kazakhstan. J. Clean Prod., 217, 352-359. |
[8] | Azhakesan, A., Yadav, S., Rajesh, V. M., 2020, Extraction of silica nanoparticles from Rice Husk Ash and its characterization. J. Sci. Ind. Res., 79(7), 656-660. |
[9] | Bai, H., Zhang, L., Gu, D., 2018, Micrometer-sized spherulites as building blocks for lotus leaf-like superhydrophobic coatings. Appl. Surf. Sci., 459, 54-62. |
[10] | Bardestani, R., Patience, G. S., Kaliaguine, S., 2019, Experimental methods in chemical engineering: specific surface area and pore size distribution measurements-BET, BJH, and DFT. Can. J. Chem. Eng., 97(11), 2781-2791. |
[11] | Bayer, I.S., 2020, Superhydrophobic coatings from ecofriendly materials and processes: a review. Adv. Mater. Interfaces, 7(13), 2000095. |
[12] | Boukhelkhal, D., Guendouz, M., Bourdot, A., Cheriet, H., Messaoudi, K., 2021, Elaboration of bio-based building materials made from recycled olive core. MRS Energy Sustain., 8, 98-109. |
[13] | Cannio, M., Boccaccini, D. N., Caporali, S., Taurino, R., 2024, Superhydrophobic Materials from Waste: Innovative Approach. Clean Technol., 6(1), 299-321. |
[14] | Carlsen, M. M. H., Saito, Y., 2024, Phase diagram of SiO2 crystallization upon rice husk combustion to control silica ash quality. J. Waste Manag., 182, 55-62. |
[15] | Castillo, J., Galarza-Acosta, G. L., 2024, Superhydrophobic silica nanoparticles produced from rice husks, wettability at the macro-and nanoscale. Appl. Phys. A: Mater. Sci. Process, 130(2), 102. |
[16] | Chandrasekhar, S., Pramada, P.N., Praveen, L., 2005, Effect of organic acid treatment on the properties of rice husk silica. J. Mater. Sci. 40, 6535-6544. |
[17] | Chandrasekhar, S., Pramada, P. N., Majeed, J., 2006, Effect of calcination temperature and heating rate on the optical properties and reactivity of rice husk ash. J. Mater. Sci., 41, 7926-7933. |
[18] | Cho, Y. H., Jeong, S., Kim, S. J., Kim, Y., Lee, H. J., Lee, T. H., Park, H. B., Park, H., Nam, S. E., Park, Y. I., 2021, Sacrificial graphene oxide interlayer for highly permeable ceramic thin film composite membranes. J. Membr. Sci., 618, 118442. |
[19] | Danu, S., 2008, UV-curing of titanium dioxide pigmented epoxy acrylate coating on ceramic tiles. J. Ceram. Soc. Jpn., 116(1356), 896-903. |
[20] | Endale, S. A., Taffese, W. Z., Vo, D. H., Yehualaw, M. D., 2022, Rice husk ash in concrete. Sustainability, 15(1), 137. |
[21] | Fernandes, I. J., Santos, R. V., Santos, E. C. A. D., Rocha, T. L. A. C., Domingues Junior, N. S., Moraes, C. A. M., 2018, Replacement of commercial silica by rice husk ash in epoxy composites: a comparative analysis. Mat. Res., 21(3), e20160562. |
[22] | Gómez-García, R., Campos, D. A., Aguilar, C. N., Madureira, A. R., Pintado, M., 2021, Valorisation of food agro-industrial by-products: From the past to the present and perspectives. J. Environ. Manag., 299, 113571. |
[23] | Gomes, L. S., Furtado, A. C. R., Souza, M. C., 2018, Silica and its Peculiarities. Rev. Virtual Quim., 10(4), 1018-1038. |
[24] | Guendouz, M., Boukhelkhal, D., 2018, Physical and mechanical properties of cement mortar made with brick waste. In MATEC Web of Conferences (Vol. 149, p. 01077). EDP Sciences. |
[25] | Guendouz, M., Boukhelkhal, D., 2018, Properties of dune sand concrete containing coffee waste. In MATEC web of conferences (Vol. 149, p. 01039). EDP Sciences. |
[26] | Guendouz, M., Boukhelkhal, D., 2019, Properties of flowable sand concrete containing ceramic wastes. J. Adhes. Sci. Technol., 33(24), 2661-2683. |
[27] | Guendouz, M., Boukhelkhal, D., Bourdot, A., 2021, Recycling of floor tile waste as fine aggregate in flowable sand concrete. In Advances in Green Energies and Materials Technology: Selected Articles from the Algerian Symposium on Renewable Energy and Materials (ASREM-2020) (pp. 223-229). Springer Singapore. |
[28] | Guendouz, M., Boukhelkhal, D., Mechantel, A., Boukerma, T., 2023, Valorization of coffee waste as bio-aggregates in crushed sand concrete production. Environ. Eng. Manag. J., 22(1). |
[29] | Islam, M. T., Hossen, M. F., Asraf, M. A., Zakaria, C. M., 2024, Production and Characterization of Silica from Rice Husk: An Updated Review. Asian J. Chem. Sci., 14(2), 83-96. |
[30] | Iwuanyanwu, O., Gil-Ozoudeh, I., Okwandu, A. C., Ike, C. S., 2024, The role of green building materials in sustainable architecture: Innovations, challenges, and future trends. Int. J. Appl. Res. Soc. Sci., 6(8), 1935-1950. |
[31] | Jembere, A. L., Fanta, S. W., 2017, Studies on synthesizing silica powder from rice husk ash as reinforcement filler in rubber tire tread part: Replacement of commercial precipitated silica. Int. J. Mater. Sci. Appl., 6(1), 37-44. |
[32] | Junaidi, M. U. M., Haji Azaman, S. A., Ahmad, N. N. R., Leo, C. P., Lim, G. W., Chan, D. J. C., Yee, H. M., 2017, Superhydrophobic coating of silica with photoluminescence properties synthesized from rice husk ash. Prog. Org. Coat., 111, 29-37. |
[33] | Jyoti, A., Singh, R. K., Kumar, N., Aman, A. K., Kar, M., 2021, Synthesis and properties of amorphous nanosilica from rice husk and its composites. Mater. Sci. Eng. B, 263, 114871. |
[34] | Kumar, A., Negi, S., Kar, S., 2024, A study on functionalization process of silicon dioxide nanoparticles for hydrophobic coating applications. Surf. Interface and Anal., 56(7), 447-455. |
[35] | Kung, C. H., Sow, P. K., Zahiri, B., Mérida, W., 2019, Assessment and interpretation of surface wettability based on sessile droplet contact angle measurement: challenges and opportunities. Adv. Mater. Interfaces, 6(18), 1900839. |
[36] | Lejnieks, J., Mourran, A., Tillmann, W., Keul, H., Möller, M., 2010, Thin film of Poly (acrylic acid-co-allyl acrylate) as a Sacrificial Protective Layer for Hydrophilic Self Cleaning Glass. Materials, 3(5), 3369-3384. |
[37] | Li, D., Xu, F., 2020, The study of the possibility of silicon dioxide coatings modified by (3-aminopropyl) triethoxysilane as protective materials for stone. J. Coat. Technol. Res., 17(2), 563-572. |
[38] | Lima, S. P. B. D., Vasconcelos, R. P. D., Paiva, O. A., Cordeiro, G. C., Chaves, M. R. D. M., Toledo Filho, R. D., Fairbairn, E. D. M. R., 2011, Production of silica gel from residual rice husk ash. Quim. Nova, 34, 71-75. |
[39] | Liou, T. H., Yang, C. C., 2011, Synthesis and surface characteristics of nanosilica produced from alkali-extracted rice husk ash. Mater. Sci. Eng. B, 176(7), 521-529. |
[40] | Matinfar, M., Nychka, J. A., 2023, A review of sodium silicate solutions: Structure, gelation, and syneresis. Adv. Colloid. Interface Sci. 322, 103036. |
[41] | Moosa, A. A., Saddam, B. F., 2017, Synthesis and Characterization of Nanosilica from Rice Husk with Applications to Polymer Composites. Am. J. Mater. Sci., 7(6), 223-231. |
[42] | Nakano, K., Ito, T., Onouchi, Y., Yamanaka, M., Akita, S., 2016, Importance of gelation and crystallization for producing superhydrophobic surfaces from mixtures of hydrogenated castor oil and fatty acids. Colloid Polym. Sci., 294, 69-75. |
[43] | Nayak, P. P., Datta, A. K., 2021, Synthesis of SiO2-nanoparticles from rice husk ash and its comparison with commercial amorphous silica through material characterization. Silicon, 13(4), 1209-1214. |
[44] | Nehan, P. Z. Z., Akbar, A. A., Karim, M. I. N., Fahriza, R. A., Zainuri, M., 2023, Synthesis of Silica from Rice Husk Waste for Hydrophobic Material as an Anti-Water Coating for Eyeglasses. J. Fis. dan Apl., 19(2), 44-48. |
[45] | Nzereogu, P. U., Omah, A. D., Ezema, F. I., Iwuoha, E. I., Nwanya, A. C., 2023, Silica extraction from rice husk: comprehensive review and applications. Hybrid Adv., 4, 100111. |
[46] | Prasad, R., Pandey, M., 2012, Rice husk ash as a renewable source for the production of value added silica gel and its application: an overview. Bull. Chem. React. Eng. Catal., 7(1), 1-25. |
[47] | Samy, A., Ismail, A. M., Ali, H., 2023, Environmentally friendly mesoporous SiO2 with mixed fiber/particle morphology and large surface area for enhanced dye adsorption. J. Mater. Sci., 58(4), 1586-1607. |
[48] | Santos, T., Hennetier, L., Costa, V. A., Costa, L. C., 2020, Microwave vs conventional porcelain firing: macroscopic properties. Int. J. Appl. Ceram. Tec., 17(5), 2277-2285. |
[49] | Sarma, H. H. and Paul, A., 2024, Turning Waste into Wealth: Exploring Strategies for Effective Agricultural Waste Management. [Online]. Avaiable: https://vigyanvarta.in/ArticleDetails.aspx?id=1980 |
[50] | Sauthier, G., Segura, J. J., Fraxedas, J., Verdaguer, A., 2014, Hydrophobic coating of mica by stearic acid vapor deposition. Colloids Surf. A: Physicochem. Eng. Asp., 443, 331-337. |
[51] | Ugheoke, I. B., Mamat, O., 2012, A critical assessment and new research directions of rice husk silica processing methods and properties. Maejo Int. J. Sci. Technol., 6(03), 430-448. |
[52] | Varışli, S.Ö., Taşkıran, F., Öztürk, B., Çiçek, B., 2023, Effect of SiO2/Al2O3 ratio on the whiteness of ceramic tile engobes with low zircon content. Cerâmica, 69, 254-260. |
[53] | Vidal, L., Joussein, E., Colas, M., Cornette, J., Sanz, J., Sobrados, I., Gelet, J. L., Absi, J., Rossignol, S., 2016, Controlling the reactivity of silicate solutions: A FTIR, Raman, and NMR study. Colloids Surf. A: Physicochem. Eng. Asp., 503, 101-109. |
[54] | Wen, M., Zhong, J., Zhao, S., Bu, T., Guo, L., Ku, Z., Peng, Y., Huang, F., Cheng, Y.B., Zhang, Q., 2017, Robust transparent superamphiphobic coatings on non-fabric flat substrates with inorganic adhesive titania bonded silica. J. Mater. Chem. A, 5(18), 8352-8359. |
[55] | Wu, Y., Tan, X., Wang, Y., Tao, F., Yu, M., Chen, X., 2022, Nonfluorinated, transparent, and antireflective hydrophobic coating with self-cleaning function. Coll. Surf. A Colloid Surf. A Physiochem. Eng. Asp., 634, 127919. |
[56] | Yuan, S., Hou, Y., Liu, S., Ma, Y. A., 2024, Comparative Study on Rice Husk, as Agricultural Waste, in the Production of Silica Nanoparticles via Different Methods. Materials, 17(6), 1271. |
[57] | Yuvakkumar, R., Elango, V., Rajendran, V., Kannan, N., 2014, High-purity nanosilica powder from rice husk using a simple chemical method. J. Exp. Nanosci., 9(3), 272-281. |
[58] | Zou Y. and Yang T., Rice Husk, Rice Husk Ash and Their Applications. In: Cheong L-Z, Xu X (eds) Rice Bran and Rice Bran Oil, pp 207-246. AOCS Press, Champaign, 2019. |
[59] | Zulfiqar, U., Subhani, T., Husain, S. W., 2016, Synthesis of silica nanoparticles from sodium silicate under alkaline conditions. J. Sol-Gel Sci. Techn., 77, 753-758. |