[1] | S. Sharma, S. S. Pande, and P. Swaminathan, “Top-down synthesis of zinc oxide-based inks for inkjet printing,” RSC Advances, 2017, Doi: 10.1039/c7ra07150g. |
[2] | Hoath. S. D, Fundamentals of inkjet printing. USA: Wiley-VCH. |
[3] | R. E. A. Anee, S. M. Roy, N. C. Karmakar, R. Yerramilli, and G. F. Swiegers, “Printing techniques and performance of chipless tag design on flexible low-cost thin-film substrates,” in Chipless and Conventional Radio Frequency Identification: Systems for Ubiquitous Tagging, 2012. |
[4] | S. Al Raut N C, “Inkjet Printing Metals on Flexible Materials for Plastic and Paper Electronics,” J. Mater. Chem. C, 2018. |
[5] | W. Yang, E. J. W. List-Kratochvil, and C. Wang, “Metal particle-free inks for printed flexible electronics,” Journal of Materials Chemistry C. 2019, Doi: 10.1039/c9tc05463d. |
[6] | Y. Choi, K. Dong Seong, and Y. Piao, “Metal-Organic Decomposition Ink for Printed Electronics,” Advanced Materials Interfaces. 2019, Doi: 10.1002/admi.201901002. |
[7] | A. Pajor-Świerzy et al., “The optimization of methods of synthesis of nickel-silver core-shell nanoparticles for conductive materials,” Nanotech-nology, 2019, Doi: 10.1088/1361-6528/aae677. |
[8] | W. Marchal et al., “Effectiveness of Ligand Denticity-Dependent Oxidation Protection in Copper MOD Inks,” Langmuir, 2019, Doi: 10.1021/acs.langmuir.9b02281. |
[9] | B. Derby, “Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution,” Annu. Rev. Mater. Res., 2010, Doi: 10.1146/annurev-matsci-070909-104502. |
[10] | A. Pajor-Świerzy, R. Socha, R. Pawłowski, P. Warszyński, and K. Szczepanowicz, “Application of metallic inks based on nickel-silver core-shell nanoparticles for fabrication of conductive films,” Nanotechnology, 2019, Doi: 10.1088/1361-6528/ ab0467. |
[11] | Gysling Henry J, “Nanoinks in inkjet Metallization-Evolution of simple additive type metal patterning,” Current Opinion Colloid Interface Science, Vol. 19, pp. 155–162, 2014, Doi: http://dx.doi.org/10.1016/j.cocis.2014.03.013. |
[12] | Y. Farraj et al., “Ink-jet printed copper complex MOD ink for plastic electronics,” in International Conference on Digital Printing Technologies, 2014. |
[13] | H. Shahariar, I. Kim, H. Soewardiman, and J. S. Jur, “Inkjet Printing of Reactive Silver Ink on Textiles,” ACS Appl. Mater. Interfaces, 2019, Doi: 10.1021/acsami.8b18231. |
[14] | H. Xu, X. Tang, H. Sun, H. Zhao, and M. Li, “Conductivity of silver and copper film printed by particle-free reactive inks,” in 18th International Conference on Electronic Packaging Technology, ICEPT 2017, 2017, Doi: 10.1109/ICEPT. 2017. 8046713. |
[15] | R. Brisse et al., “Inkjet printing NiO-based p-Type dye-sensitized solar cells,” ACS Appl. Mater. Interfaces, 2017, Doi: 10.1021/acsami.6b12912. |
[16] | V. S. Turkani et al., “Nickel Based Printed Resistance Temperature Detector on Flexible Polyimide Substrate,” in Proceedings of IEEE Sensors, 2018, Doi: 10.1109/ICSENS.2018. 858 9549. |
[17] | W. A. MacDonald et al., “Latest advances in substrates for flexible electronics,” J. Soc. Inf. Disp., 2007, Doi: 10.1889/1.2825093. |
[18] | Z. Zhong, X. Gong, L. Wang, G. Bai, H. Wei, and W. Yang, “A facile way for the fabrication of silver nanoparticle decorated graphene composites,” Mater. Chem. Phys., 2020, Doi: 10.1016/j.matchemphys.2019.122344. |
[19] | K. A. Magdassi, Shlomo, Nanomaterials for 2D and 3D Printing, First. Wiley-VCHVerlag Gmb H&Co. KGaA., 2017. |
[20] | C. Schoner, A. Tuchscherer, T. Blaudeck, S. F. Jahn, R. R. Baumann, and H. Lang, “Particle-free gold metal-organic decomposition ink for inkjet printing of gold structures,” Thin Solid Films, 2013, Doi: 10.1016/j.tsf.2013.01.027. |
[21] | H. Kang, G. H. Lee, and Y. Nam, “Inkjet-printed gold nanorods using biocompatible polyelectrolyte layer-by-layer coating for patterned photothermal applications,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2017, Doi: 10.1109/EMBC.2017.8037622. |
[22] | K. R. Zope, D. Cormier, and S. A. Williams, “Reactive Silver Oxalate Ink Composition with Enhanced Curing Conditions for Flexible Substrates,” ACS Appl. Mater. Interfaces, 2018, Doi: 10.1021/acsami.7b19161. |
[23] | P. Fleury, J. ‐P. Mathieu, and L. Marton, “Lumière,” Physics. Today, 1962, Doi: 10.1063/ 1.3058081. |
[24] | H. Ramachandran, M. M. Jahanara, N. M. Nair, and P. Swaminathan, “Metal oxide heterojunctions using a printable nickel oxide ink,” RSC Adv., 2020, Doi: 10.1039/c9ra08466e. |
[25] | Y. Kawaguchi, Y. Hotta, and H. Kawasaki, “Cu-based composite inks of a self-reductive Cu complex with Cu flakes for the production of conductive Cu films on cellulose paper,” Mater. Chem. Phys., 2017, Doi: 10.1016/j.matchemphys.2017.05.017. |
[26] | C. G. Mahajan et al., “Formation of Copper Nickel Bimetallic Nano alloy Film Using Precursor Inks,” Material Science Applications, 2019, Doi: 10.4236/msa.2019.104026. |
[27] | I. S. Kondo Masaru, Shiromizu Hisharu, “Ceramic metallization Inks,” 388, 368, 983. |
[28] | D. Li, D. Sutton, A. Burgess, D. Graham, and P. D. Calvert, “Conductive copper and nickel lines via reactive inkjet printing,” J. Mater. Chem., 2009, Doi: 10.1039/b820459d. |
[29] | K. Yoichi, “Nickel Ink,” US 2009/0053525 A1, 2009. |
[30] | J. J.-H. Hsu Chin-Jung, “Formulation and dispersion of NiCuZn ferrite paste,” Mater. Chem. Phys., vol. 78, pp. 323–329, 2002. |
[31] | W. J. Tseng and C. N. Chen, “Dispersion and rheology of nickel nanoparticle inks,” J. Mater. Sci., 2006, Doi: 10.1007/s10853-005-3659-z. |
[32] | K. A. D. Morgan Charles R., “HEAT CURABLE CONDUCTIVE INK,” 4,406,826, 1983. |
[33] | N. Li et al., “The Effect of Graphene on the Deposition and Mechanical Property of Ni-Fe-Graphene Composite Coating,” J. Electrochem. Soc., 2018, Doi: 10.1149/2.1061805jes. |
[34] | M. K. Paliwal and S. K. Meher, “3D-heterostructured NiO nanofibers/ultrathin g-C3N4 holey nanosheets: An advanced electrode material for all-solid-state asymmetric supercapacitors with multi-fold enhanced energy density,” Electrochim. Acta, 2020, Doi: 10.1016/j.electacta.2020.136871. |
[35] | A. Samos-Puerto, G. Rodríguez-Gattorno, and M. A. Ruiz-Gómez, “Fine-tuning of inkjet printability parameters for NiO nanofilms fabrication,” Colloids Surfaces A Physicochem. Eng. Asp., 2019, Doi: 10.1016/j.colsurfa.2019.123959. |
[36] | R. Pasquarelli, C. Curtis, and M. Van Hest, “Inkjet Printing of Nickel and Silver Metal Solar Cell Contacts,” Energy J., 2007. |
[37] | J. Kettle, H. Waters, M. Horie, and S. W. Chang, “Effect of the hole transporting layers on the performance of PCPDTBT:PCBM organic solar cells,” J. Phys. D. Appl. Phys., 2012, Doi: 10.1088/0022-3727/45/12/125102. |
[38] | S. Takami, R. Hayakawa, Y. Wakayama, and T. Chikyow, “Continuous hydrothermal synthesis of nickel oxide nanoplates and their use as nanoinks for p-type channel material in a bottom-gate field-effect transistor,” Nanotechnology, 2010, Doi: 10.1088/0957-4484/21/13/134009. |
[39] | J. R. Manders et al., “Solution-processed nickel oxide hole transport layers in high-efficiency polymer photovoltaic cells,” Adv. Funct. Mater., 2013, Doi: 10.1002/adfm.201202269. |
[40] | S. H. Park and H. S. Kim, “Flash light sintering of nickel nanoparticles for printed electronics,” Thin Solid Films, 2014, Doi: 10.1016/j.tsf.2013.11.075. |
[41] | H. M. Yates, S. M. P. Meroni, D. Raptis, J. L. Hodgkinson, and T. M. Watson, “Flame assisted chemical vapor deposition NiO hole transport layers for mesoporous carbon perovskite cells,” J. Mater. Chem. C, 2019, Doi: 10.1039/c9tc03922h. |
[42] | Y. Tamari, A. Gautrein, C. Schmiga, S. Binder, M. Glatthaar, and S. W. Glunz, “Synthesis of a lead- And particle-free metal-organic ink for front side metallization of crystalline silicon solar cells,” in Energy Procedia, 2014, Doi: 10.1016/j.egypro.2014.08.049. |
[43] | V. Sharma, C. Chotia, Tarachand, V. Ganesan, and G. S. Okram, “Influence of particle size and dielectric environment on the dispersion behavior and surface plasmon in nickel nanoparticles,” Phys. Chem. Chem. Phys., 2017, Doi: 10.1039/c7cp01769c. |
[44] | M. Wang, W. Zhu, Z. Yin, L. Huang, and J. Li, “Synergistic effects of Li-doped NiOx film prepared by low-temperature combustion as a hole -injection layer for high-performance OLED devices,” Organic Electronics, 2020, Doi: 10.1016/j.orgel.2020.105823. |
[45] | A. E. Jakus, S. L. Taylor, N. R. Geisendorfer, D. C. Dunand, and R. N. Shah, “Metallic Architectures from 3D-Printed Powder-Based Liquid Inks,” Adv. Funct. Mater., 2015, Doi: 10.1002/adfm.201503921. |
[46] | Y. Yang et al., “Redox-inactive samarium(III) acetylacetonate as dopant enabling cation substitution and interfacial passivation for efficient and stable CsPbI2Br perovskite solar cells,” APL Mater., 2020, Doi: 10.1063/5.0011918. |
[47] | C. H. Hou, J. J. Shyue, W. F. Su, and F. Y. Tsai, “Catalytic metal-induced crystallization of sol-gel metal oxides for high-efficiency flexible perovskite solar cells,” J. Mater. Chem. A, 2018, Doi: 10.1039/c8ta05973j. |
[48] | S. Liu, R. Liu, Y. Chen, S. Ho, J. H. Kim, and F. So, “Nickel oxide hole injection/transport layers for efficient solution-processed organic light-emitting diodes,” Chem. Mater., 2014, Doi: 10.1021/cm501898y. |
[49] | M. Ruscello et al., “Nanocomposite of nickel oxide nanoparticles and polyethylene oxide as a printable hole transport layer for organic solar cells,” Sustainable Energy Fuels, 2019, Doi: 10.1039/c9se00216b. |
[50] | D. Lee, D. Paeng, H. K. Park, and C. P. Grigoropoulos, “Vacuum-free, maskless patterning of Ni electrodes by laser reductive sintering of Nio nanoparticle ink and its application to transparent conductors,” ACS Nano, 2014, Doi: 10.1021/nn503383z. |
[51] | C. I. Lin, J. H. Tsai, and J. Z. Chen, “Scanning atmospheric-pressure plasma jet treatment of nickel oxide with peak temperature of ∼500°C for fabricating p-i-n structure perovskite solar cells,” RSC Adv., 2020, Doi: 10.1039/d0ra01434f. |
[52] | B. olatSami Marques Gabriel Cadilha, Sukuramsyah Adrianus Matthew, Arnal August, E. R. Abdessalem Aribia, Xiaowei Feng, Surya Abhishek Singaraju, and and J. A.-H. Yaroslav Romanyuk, Mehdi Tahoori, “Fabrication and Modeling of pn-Diodes Based on Inkjet Printed Oxide Semiconductors,” in IEEE ELECTRON DEVICE LETTERS, VOL. 41, NO. 1, JANUARY 2020, 2020. |
[53] | M. B. & S. G. C. Turkani Vikram S, Alexandra Pekarovicova, Paul D. Fleming, Massood Z. Atashbar, “One-step photonic curing of screen-printed conductive Ni flake electrodes for use in flexible electronics,” Sci. Report, Nat., vol. 11, no. 3393, 2021. |
[54] | C. Wang, G. Y. Hong, K. M. Li, and H. T. Young, “A miniaturized nickel oxide thermistor via aerosol jet technology,” Sensors (Switzerland), 2017, Doi: 10.3390/s17112602. |
[55] | J. J. Jing, J. Xie, G. Y. Chen, W. H. Li, and M. M. Zhang, “Preparation of nickel-silver core-shell nanoparticles by a liquid-phase reduction for use in conductive paste,” J. Exp. Nanosci., 2015, Doi: 10.1080/17458080.2015.1012751. |
[56] | M. M. Mohammadi, S. S. Gunturi, S. Shao, S. Konda, R. D. Buchner, and M. T. Swihart, “Flame-synthesized nickel-silver nanoparticle inks provide high conductivity without sintering,” Chem. Eng. J., 2019, Doi: 10.1016/j.cej.2019.04.141. |
[57] | T. R. J., W. J. F., and M. R. C., “Nickel Particle Plating System,” 4,857,233, 1989. |
[58] | D. H. Chen and S. R. Wang, “Protective agent-free synthesis of Ni-Ag core-shell nanoparticles,” Material Chemistry. Physics, 2006, Doi: 10.1016 /j.matchemphys.2006.01.027. |
[59] | P. Prieto, V. Nistor, K. Nouneh, M. Oyama, M. Abd-Lefdil, and R. Díaz, “XPS study of silver, nickel and bimetallic silver-nickel nanoparticles prepared by seed-mediated growth,” Appl. Surf. Sci., 2012, Doi: 10.1016/j.apsusc.2012.05.095. |
[60] | Z. P. Yin, Y. A. Huang, N. Bin Bu, X. M. Wang, and Y. L. Xiong, “Inkjet printing for flexible electronics: Materials, processes and equipment,” Chinese Science Bulletin. 2010, Doi: 10.1007/ s11434-010-3251-y. |
[61] | W. A. Badawy, K. M. Ismail, and A. M. Fathi, “Effect of Ni content on the corrosion behavior of Cu-Ni alloys in neutral chloride solutions,” Electrochim. Acta, 2005, Doi: 10.1016/j.electacta.2004.12.030. |
[62] | E. Pál et al., “Composition-dependent sintering behavior of chemically synthesized CuNi nanoparticles and their application in aerosol printing for preparation of conductive microstructures,” Colloid Polym. Sci., 2012, Doi: 10.1007/s00396-012-2612-3. |
[63] | J. Ahmed et al., “Bimetallic Cu-Ni nanoparticles of varying composition (CuNi3, CuNi, Cu3Ni),” Colloids Surfaces A Physicochem. Eng. Asp., 2008, Doi: 10.1016/j.colsurfa.2008.08.007. |
[64] | J. J. Chen, G. Q. Lin, Y. Wang, E. Sowade, R. R. Baumann, and Z. S. Feng, “Fabrication of conductive copper patterns using reactive inkjet printing followed by two-step electroless plating,” Appl. Surf. Sci., 2017, Doi: 10.1016/j.apsusc.2016.09.152. |
[65] | A. Yabuki, Y. Ichida, S. Kang, and I. W. Fathona, “Nickel film synthesized by the thermal decomposition of nickel-amine complexes,” Thin Solid Films, 2017, Doi: 10.1016/j.tsf.2017.09.040. |
[66] | K. H. Tomotoshi Daisuke, Oogami Rika, “Highly Conductive, Flexible, and Oxidation-Resistant Cu-Ni Electrodes Produced from Hybrid Inks at Low Temperatures,” Surfaces, Interfaces, ACS, vol. 13, no. 17, pp. 20906–20915, 2021, Doi: https://Doi.org/10.1021/acsami.1c04235. |
[67] | A. Dahal and M. Batzill, “Graphene-nickel interfaces: A review,” Nanoscale. 2014, Doi: 10.1039/c3nr05279f. |
[68] | X. Li et al., “Layer by layer inkjet printing reduced graphene oxide film supported nickel-cobalt layered double hydroxide as a binder-free electrode for supercapacitors,” Appl. Surf. Sci., 2020, Doi: 10.1016/j.apsusc.2019.144872. |
[69] | W. Zhang, E. Bi, M. Li, and L. Gao, “Synthesis of Ag/RGO composite as effective conductive ink filler for flexible inkjet printing electronics,” Colloids Surfaces A Physicochem. Eng. Asp., 2016, Doi: 10.1016/j.colsurfa.2015.11.014. |
[70] | N. Zhang, J. Luo, R. Liu, and X. Liu, “Tannic acid stabilized silver nanoparticles for inkjet printing of conductive flexible electronics,” RSC Adv., 2016, Doi: 10.1039/c6ra19800g. |
[71] | Z. Ren et al., “Mechanical properties of nickel-graphene composites synthesized by electrochemical deposition,” Nanotechnology, 2015, Doi: 10.1088/0957-4484/26/6/065706. |
[72] | S. T. Murata H, Toko K, Saitoh N, Yoshizawa, “Direct synthesis of multilayer graphene on an insulator by Ni-induced layer exchange growth of amorphous carbon,” Appl. Phys. Lett., 2017, Doi: [http://dx.Doi.org/10.1063/1.4974318]. |
[73] | A. Roychoudhury, A. Prateek, S. Basu, and S. K. Jha, “Preparation and characterization of reduced graphene oxide supported nickel oxide nanoparticle-based platform for sensor applications,” J. Nanoparticle Res., 2018, Doi: 10.1007/s11051-018-4173-y. |
[74] | L. Xu, R. Wang, M. Gen, L. Lu, and G. Han, “Preparation and properties of graphene/nickel composite coating based on the textured surface of aluminum alloy,” Materials (Basel)., 2019, Doi: 10.3390/ma12193240. |
[75] | J. Y. Xue Yang, Jun Jie, Mao Hao, Niu Qian, Wang Kai, Zhu Ke, Ye Guiling, Wang Dian, Xue Cao, “NiS2/MoS2 mixed phases with abundant active edge sites induced by sulfidation and graphene introduction towards high-rate supercapacitors,” Chem. Eng. J., vol. 406, 2021, Doi: https://Doi.org/10.1016/j.cej.2020.126713. |
[76] | M. R. Somalu and N. P. Brandon, “Rheological studies of nickel/scandia-stabilized-zirconia screen printing inks for solid oxide fuel cell anode fabrication,” J. Am. Ceram. Soc., 2012, Doi: 10.1111/j.1551-2916.2011.05014.x. |
[77] | L. Chen et al., “Formation of Mn-Co-Ni-O Nanoceramic Microspheres Using In Situ Ink-Jet Printing: Sintering Process Effect on the Microstructure and Electrical Properties,” Small, 2016, Doi: 10.1002/smll.201600470. |
[78] | M. Rosa, P. Zielke, R. Kiebach, V. Costa Bassetto, A. Lesch, and V. Esposito, “Printing of NiO-YSZ nanocomposites: From continuous synthesis to inkjet deposition,” J. Eur. Ceram. Soc., 2019, Doi: 10.1016/j.jeurceramsoc.2018.12.030. |
[79] | Y. Gu and J. F. Federici, “Fabrication of a flexible current collector for lithium-ion batteries by inkjet printing,” Batteries, 2018, Doi: 10.3390/ batteries4030042. |
[80] | S. L. Taylor, A. E. Jakus, R. N. Shah, and D. C. Dunand, “Iron and Nickel Cellular Structures by Sintering of 3D-Printed Oxide or Metallic Particle Inks,” Adv. Eng. Mater., 2017, Doi: 10.1002/adem.201600365. |
[81] | R. W. J. Lockett Vera N, Hartman Alexandra E, Gustafson John G, Lowenthal Mark D, “Nickel Inks And Oxidation Resistant And Conductive Coatings,” 14/141, 929, 2019. |
[82] | M. R. Somalu et al., “Understanding the Relationship between Ink Rheology and Film Properties for Screen-Printed Nickel/Scandia-Stabilized-Zirconia Anodes,” ECS Trans., 2013, Doi: 10.1149/05701.1321ecst. |
[83] | T. B. Mitchell-Williams et al., “Infiltration of commercially available, anode supported SOFC’s via inkjet printing,” Mater. Renew. Sustain. Energy, 2017, Doi: 10.1007/s40243-017-0096-2. |
[84] | C. M. T. A. J. D.; Chahal Premjeet, “Multi-material Aerosol Jet Printed Magnetic Nanocomposites for Microwave Circuits,” IEEE Trans. Components, Packag. Manuf. Technol. (Early Access), pp. 1–1, 2021, Doi: 10.1109/TCPMT.2021.3071113. |
[85] | B. R. K. Rahumi Or, Sobolev Alexander, Kumar Manasa, “Nanostructured engineering of nickel cermet anode for solid oxide fuel cell using inkjet printing,” J. Eur. Ceram. Soc., vol. 41, no. 8, pp. 4528–4536, Doi: https://doi.org/10.1016/j.jeurcera msoc.2021.03.017. |
[86] | A. Kamyshny and S. Magdassi, “Conductive nanomaterials for printed electronics,” Small. 2014, Doi: 10.1002/smll.201303000. |
[87] | D. Dylan, “Formulating a Particle-Free and Low-Temperature Nickel Reactive Ink for Inkjet Printing Conductive Features,” Arizona State University, 2019. |
[88] | C. G. Mahajan et al., “Magnetic field patterning of nickel nanowire film realized by printed precursor inks,” Materials (Basel)., 2019, Doi: 10.3390/ ma12060928. |