[1] | AK. Geim, KS. Novoselov, The rise of graphene. Nat. Mater., 6, 183–191 (2007). |
[2] | Y. Feng, SH. Huang, K. Kang et al., Preparation and characterization of graphene and few-layer graphene. New carbon materials, 26(1), 26–30 (2011). |
[3] | MJ. McAllister, JL. Li, DH. Adamson, HC. Schniepp, AA. Abdala, J. Liu, M. Herrera-Alonso, DL. Milius, R. Car, RK. Rrud’homme, IA. Aksay, Single sheet functionalized graphene by graphite. Chem. Mate., 19, 4396–4404 (2007). |
[4] | I. Lightcap, PV. Kamat, Graphitic design; prospects of graphene-based nanocomposites for solar energy conversion, storage, and sensing. ACC. Chem. Res., 46, 2235–2243 (2013). |
[5] | X. Huang, X. Qi, F. Boey, H. Zhang, Graphene-based composites. Chem. Soc. Rev., 41, 666–686 (2012). |
[6] | Y. Zhu, S. Murali, W. Cai, X. Li, JW. Suk, JR. Potts, RS. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mat., 22, 3906–24 (2010). |
[7] | DR. Dreyer, S. Park, CW. Bielawaski, RS. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev., 39, 228–240 (2010). |
[8] | O. Stephan, PM. Ajayan, C. Colliex, P. Redllich, JM. Lambert, P. Bernier, P. Lefin, Doping graphite and carbon nanotube structures with boron and nitrogen. Science, 266, 1683–1685 (1994). |
[9] | EA. Ekimov, VA. Sidorov, ED. Bauer, NN. Melʼnik, NJ. Curro, JD. Thompson, SM. Stishov, Superconductivity in diamond. Nature, 428, 542–545 (2004). |
[10] | R. Czerw, M. Terrones, JC. Charlier, X. Blasé, B. Foley, R. Kamakalaran, N. Grobert, H. Terrones, D. Tekleab, PM. Ajayan, W. Blau, M. Ruhle, DL. Caroll, Identification of electron donor states in N-doped carbon nanotubes. Nano Lett., 1, 457–460 (2001). |
[11] | Y. Xia, R. Mokaya, Synthesis of ordered mesoporous carbon and nitrogen-doped carbon materials with graphitic pore walls via a simple chemical vapor deposition method. Adv. Mat., 16(17), 1553–1558 (2004). |
[12] | D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, G. Yu, Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett., 9(5), 1752–1758 (2009). |
[13] | CD. Wang, YA. Zhou, LF. He, TW. Ng, G. Hong, QH. Wu, G. Gao, CS. Lee, WJ. Zhang. In situ nitrogen-doped graphene grown from polydimethylsiloxane by plasma enhanced chemical vapor deposition. Nanoscale, 5(2), 600–605 (2013). |
[14] | X. Li, H. Wang, JT. Robinson, H. Sanchez, G. Diankov, H. Dai, Simultaneous nitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc., 131(43), 15939–15944 (2009). |
[15] | S. Li, Z. Wang, H. Jiang, L. Zhang, J. Ren, M. Zheng, L. Dong, L. Sun, Plasma-induced highly efficient synthesis of boron doped reduced graphene oxide for supercapacitors. Chem. Commun., 52, 10988–10991 (2016). |
[16] | S. Umrao, TK. Gupta, S. Kumar, VK. Singh, MK. Sultania, JH. Jung, , IK. Oh, A. Srivastava, Microwave-assisted synthesis of boron and nitrogen co-doped reduced graphene oxide for the protection of electromagnetic radiation in Ku-band. ACS Appl. Mater. Inter., 7, 19831–19842 (2015). |
[17] | Q. Wei, X. Tong, G. Zhang, J. Qiao, Q. Gong, S. Sun, Nitrogen-doped carbon nanotube and graphene materials for oxygen reduction reactions. Catalysts, 5(3), 1574–1602 (2015). |
[18] | MA. Mannan, Y. Hirano, AT. Quitain, M. Koinuma, T. Kida, Boron doped graphene oxide: synthesis and application to glucose responsive reactivity. Int. J. Currt. Res., 10(11), 75335–75340 (2018). |
[19] | A. Allahbakhsh, F. Sharif, S. Mazinani, MR. Kalaee, Synthesis and characterization of graphene oxide in suspension and powder forms by chemical exfoliation method. Int. J. Nano Dimen., 5(1), 11–20 (2014). |
[20] | J. Song, X. Wang, CT. Chang, Preparation and characterization of graphene oxide. J. Nanomat., Article ID 276143, 6 (2014). |
[21] | C. Zhang, R. Hao, H. Liao, Y. Hou, Synthesis of aminofunctionalized graphene as metal-free catalyst and exploration of the roles of various nitrogen states in oxygen reduction reaction. Nano Energy, 2, 88–97 (2013). |
[22] | S. Ram, K. Ram, IR and Raman studies and effect of γ radiation on crystallization of some lead borate glasses containing Al2O3. J. Mater. Sci., 23, 4541–4546 (1989). |
[23] | R. Gago, I. Jimenez, FA. Rueda, JM. Albella, LZs. Czigany, J. Hultman, Transition from amorphous boron carbide to hexagonal boron carbon nitride thin films induced by nitrogen ion assistance. Appl. Phys., 92, 5177–5182 (2000). |
[24] | K. Shirai, S. Emura, S. Gonda, Y. Kumashiro, Infrared study of amorphous B1-xCx films. J Appl. Phys., 78, 3392–8 (1995). |
[25] | CF. Chen, SH. Chen, Electrical properties of boron-doped diamond films after annealing treatment. Diamond Relat. Mat., 4, 451–5 (1995). |
[26] | G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotech., 3, 270–274 (2008). |
[27] | W. Chen, L. Yan, PR. Bangal, Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon, 48, 1146–1152 (2010). |
[28] | LS. Panchakarla et al., Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv. Mater., 21, 4726–4730 (2009). |
[29] | S. Park, DA. Dikin, ST. Nguyen, RS. Ruoff, Graphene oxide sheets chemically corss-linked by polyallylamine. J. Phys. Chem. C, 113, 15801–4 (2009). |
[30] | VK. Tran, GN. Han, SK. Dong, JK. Yong, Comparison study of structural and optical properties of boron-doped and undoped graphene oxide films. Chem. Eng. J., 211, 369–377 (2012). |
[31] | SL. Ding, SJ. Zheng, MJ. Xie, LM. Peng, XF. Guo, WP. Ding, One-pot synthesis of boron-doped mesoporous carbon with boric acid as a multifunction reagent. Microporous and Mesoporous Mater, 142, 609–13 (2011). |
[32] | SC. Lyu, JH. Han, KW. Shin, JH. Sok, Synthesis of boron-doped double-walled carbon nanotubes by the catalytic decomposition of tetrahydrofuran and triisopropyl borate. Carbon, 49, 1532–41 (2011). |
[33] | S. Madhumita, KP. Sreena, BP. Vinayan, S. Ramaprabhu, Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery. Mat. Res. Bull., 61 (2015) 383–390. |
[34] | X. Duan, Z. Ao, H. Sun, S. Indrawirawan, Y. Wang, J. Kang, F. Liang, ZH. Zhu, S. Wang, Nitrogen-doped graphene for generation and evolution of reactive radicals by metal-free catalysis. ACS Appl. Mater. Interfaces, 7 (7), 4169–4178 (2015). |
[35] | SY. Kim, J. Park, HC. Choi, JP. Ahn, JQ. Hou, HS. Kang, X-ray photoelectronspectroscopy and first principles calculation of BCN nanotubes. J. Am. Chem. Soc., 129, 1705-6 (2007). |
[36] | J. Jin, F. Pan, L. Jiang, X. Fu, A. Liang, Z. Wei, Catalyst-free synthesis of crumpled boron and nitrogen co-doped graphite layers with tunable bond structure for oxygen reduction reaction. ACS Nano, 8, 3313–21 (2014). |
[37] | XL. Li, HL. Wang, JT. Roninson, Simultaneous nitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc., 131, 15939–44 (2009). |
[38] | H. Fang, et al., Boron-doped graphene as a high-efficiency counter electrode for dye-sensitized solar cells. Chem. Commun., 50(25), 3328–3330 (2014). |
[39] | Y. Hishiyama, H. Irumano, Y. Kaburagi, Y. Soneda, Structure, Raman scattering, and transport properties of boron-doped graphite. Phys. Rev. B, 63, 245406 (2001). |
[40] | K. Fujisawa, R. Curz-Silva, KS. Yang, YA. Kim, T. Hayashi, M. Endo, Importance of open, heteroatom-decorated edges in chemically doped-graphene for supercapacitor applications. J. Mater. Chem. A, 2, 9532–40 (2014). |