[1] | Doorna, C. J., Tranchemontagire, D. J., Glover, T. G., Hunt, J. R. and Yaghi, O. M. (2010). Exceptional Ammonia uptake by a cocalent organic framework. Nature Chemistry, 2. pp. 235 - 238. |
[2] | Han, S. S., Furnkawa, H. Yaghi, O. M. and Goddard, W. A. (2008). Covalent organic frameworks as exceptional hydrogen storage materials. J. Amer. Chm. Soc. 130. pp. 11580 - 11581. |
[3] | Zou, X., Ren, H. and Zhu, G. (2013). Topology - directed design of porous organic frameworks and their advanced applications. Chem Commun. 49. pp. 3925 - 3936. |
[4] | Ma, H., Ren, H. Meng, S., Yan, Z., Zhao, H., Sun, F. and Zhu, G. (2013). A. 3D microporous covalent organic framework with exceedingly high C3H8-CH4 and C2Hydrocarbon selectivity. Chem. Comm. 49. pp. 9773-9775. |
[5] | Huang, N., Zhai, L., Coupy, D. E., Addicoat, M. A., Okushita, K., Nishimura, K., Heine, T. and Jiang, D. (2016). Multicomponent Covalent Organic Frameworks. Nature Communications. 7 12325 pp. 1 -12. |
[6] | Ding, S. Y. and Whang, W. (2013). Covalent Organic Frameworks (COFs): from design to applications. Chem. Soc Rev. 42. pp. 453-465. |
[7] | Feng, X., Ding, X. and Jiang, D. (2012). Covalent Organic Frameworks. Chem. Soc. Rev. 41. pp. 6010-6022. |
[8] | Ding, S. Y. and Wang, W. (2012). Covalent Organic Frameworks (CoFs): from design to applications. Chem. Soc. Rev. 42. pp. 548-568. |
[9] | O'Keife, M. and Yaghi, O. M. (2010). New Microporous Crystalline Materials: MoFs, CoFs and ZIFs. Transactions of the Symposium held at the 2010 American Crystallographic Association Annual meeting, Chicago. II, pp. 1-11. |
[10] | Wu, M-X and Yang, Y-W. (2017). Applications of Covalent organic frameworks (CoFs), from gad storage separation to dung delivery. Chinese Chemical Letters. 28. pp. 1135-1143. |
[11] | Wallert, P. J., Grannad, F. and Yaghi, O. M. (2015). Chemistry of Covalent organic frameworks. Acc. Chem. Res. 48(12). pp. 3053-3063. |
[12] | Lohse, M. S., Stassin, T. Naudin, G., Wuttke, S., Ameloot, R., De Vost, D., Medina, D. D. and Bein, T. (2016). Chem. Mater. 28(2). pp. 626-631. |
[13] | Crowe, J. W., Baldwin, L. P. and McGrier, P. L. (2016). Fluoriscent Covalent Organic Frameworks containing a homogeneous distribution of dihydhroben-zoanalene vertex units. J. Am. Chem. 138. pp. 10120-10123. |
[14] | Hou, Y. Xhang, X. Wang, C., Qi, D. Gu, Y. Wang, Z. and Jiang, J. (2017). Novel Imune-linked porphyin covalent organic frameworks with bood adsorption removing property of RhB. New J. Chem. 42, pp. 6145-6151. |
[15] | Gao, J. and Jiang, D. (2016). Covalent organic frameworks with spatially confined guest molecules in nanochannels and their impact on crystalline structures. Chem. Commun. 52. pp. 1498 -1500. |
[16] | Yue, J. Y., Mo, Y. P., Li, S. Y., Dong, W. L. Chen, T. and Wang, D. (2017). Simultaneous construction of two linkages for the on-surface synthesis of imune-boroxine hybride covalent organic framework. Chem. Sc. 18. pp. 2169-2174. |
[17] | Liu, Y. Ma, Y., Zuo, Y. Sun, X., Gandara, F., Furukawa, H., Liu, Z. Zhu, H., Zhu, C., Suenaga, K., Oleynikov, P., Alshanmari, A. S., Zhang, X., Terasaka, O. and Yaghi, O. M. (2016). Weaving of Organic Threads into a Crystalline Covalent Organic Framework. Science. 351, pp. 365-369. |
[18] | Xylas, V. S., Hasse, F., Steghaver, L., Savasci, G., Podjaski, F. Ochsenfeld, C. and Hotsch, B. V. (2015). A tunable Azine covalent organic framework platform for visible light-induced hydrogen Generation. Nat. Commun. 6. pp. 8508. |
[19] | Lanni, L. M., Tilford, R. W., Bharathy, M. and Lavigne, J. J. (2011). Enhanced hydrolytic stability of self-Assembling Alkylated two domessional Covalent organic frameworks. J. Am. Chem. Soc. 133, pp.. 13975-13983. |
[20] | Nagai, A. Guo, Z. Feng, X., Jin, S., Chen, X., Ding, X., Jiang, D. (2011). Pore surface Engineering in Covalent Organic Frameworks. Nat. Commun. 2. 536 |
[21] | Biswal B. P., Kandambeth, S., Chandra, S., Shinde, D. B., Bera, S., Karak, S. Garai, B., Kharul, U. K., Banerjec, R. (2015). Engineering in porous, Chemically Stable Covalent Organic Frameworks for Water Adsorption. J. Mater. Chem. A. 3. pp. 23664-23669. |
[22] | Cote, A. P., Benin, A. I., Ockwig, N. W., O'Keiffe, M., Matzgar, A. J. and Yaghi, O. M. (2005). Porous, Crystalline, Covalent Organic Frameworks. Science 310, pp. 1166-1170. |
[23] | Ben, T., ShiY., Cui, C., Peri, Y., Zuo, H., Guo, D., Zhang, J., Xu, F., Deng, Z., and Qiu, S. (2011). J. Mater. Chem. 21. pp. 18208-18215. |
[24] | Jin, Y., Yu, C., Denman, R. J. and Zheng, W. (2013). Recent Advances in Dynamic Covalent Chemistry. Chem. Soc. Rev. 42, pp. 6634-6654. |
[25] | Rowan, S. J., Cantrill. S. J. Cousin, G. R. L., Sanders, J. K. M., and Stoddart, J. F. (2002). Dynamic Covalent Chemistry, Angew, Chem. Int. Ed. 41, pp. 898-952. |
[26] | Zhu, G. and Ren, H. (2015). Porous Organic Frameworks. Springer Briefs in Green Chemistry for sustainability. pp. 13-42. |
[27] | Shangbin, J. (2014). Covalent Organic Frameworks. Super Literature Club @ Jiang Lab. IMS. pp. 1-32. |
[28] | Spitler, E. L., Colson, J. W. Uribe-Romo, F. J., Woll, A. R., Giorino, M. R., Saldirar, A. and Dichel, W. R. (2012). Lattice Expansion of Highly Oriented 2D phithalocyamine covalent organic framework films. Angew. Chem. 124, pp. 2677-2681. |
[29] | Davis, M. E. (2002). Ordered Porous Materials for Emaging Applications, Nature, 417. pp. 813 - 821. |
[30] | Ding, S. Y. and Wang, W. (2013). Covalent Organic Frameworks (Cofs): From design to applications. Chem. Soc. Rev. 42. pp. 548-568. |
[31] | Ding, X., Guo, J., Feng, X., Housho, Y. Guo, J. Seki, S., Maitarad, P., Saeki, A., Nagase, S. and Jiang, D. (2011). Synthesis of Metallophytha locyamine Covalent Organic Frameworks that exhibit Higher carrier mobility and photoconductivity. Angew. Chem. Int. Ed. 50, pp. 1289-1293. |
[32] | Feng, X., Chen, L. Dong, Y. and Jiang, D. (2011). Porphyrin-based two dimension covalent organic frameworks. Synchronized Synthetic Control of Macroscopic structures and pore parameters. Chem. Commn. 47. 1979-1981. |
[33] | Tilford, R. W., Gemmill, W. R., Zur, Lote, H. C. and Lavigne, J. J. (2006). Focile synthesis of highly crystalline, covalent linked porous Boronate Network. Chem. Mater. 18. pp. 5296-5301. |
[34] | Gendanken, A. (2004). Using Sonochemistry for the fabrication of nanomaterials. Ultrasonic sonochemistry 11, pp. 47-55. |
[35] | Zolfaghari, A., Ataherian, F., Ghaemi, M., Gholami, A. (2007). Capacitive behavior of nanostructured MnO2 prepared by sonochemistry method. Electrochemia Acta. 52, pp. 2806-2814. |
[36] | Sivakumar, M., Gedauken, A. Zhang, W., Jinag, Y. H., Du, Y. W., Brukental, I., Bhattacharya, D., Yeshurun, Y. and Nowik, I. (2004). J. Mater. Chem. 14, pp. 764-769. |
[37] | Yang. S. T., Kim. J., Cho, H-Y, Kim, S. and Ahn, W-S. (2012). Facile Synthesis of Covalent Organic Frameworks CoF-1 and CoF-5 by Sonochemical method. RSC. Adv. 2 pp. 101179-10181. |
[38] | Morris, R. E. (2009). Ionothermal Synthesis Ionic liquids as functional solvents in the preparation of crystalline materials. Chem. Commun. O. 2990-2998. |
[39] | Ionothermal Sysnthesis - Royal Society of Chemistry: Chemical Methods Ontology CMO: 0001387. |
[40] | Kuhn, P. and Antonietti, M. (2008). Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew Chem. 47. pp.3450-3453. |
[41] | Bodys, M. J., Jeromerok, J., Thomas, A. and Antonietti, M. (2010). Rational Extention of the family of Layered, Covalent, Triazine-Based Frameworks with Regular porosity. Adv. Mater. 22. pp. 2202-2205. |
[42] | Fu, Y-P, Su, Y-H, Wu, S-H and Lin C-H (2006). LiMn2-yMyO4(M=Cr,Co) Cathode Materials Synthesized by microwave-induced conbusion for lithium ion batteries. J. Alloys. Compd. 426. pp. 228-234. |
[43] | Neil, I. C., Clowes, R., Richie, L. K. and Cooper, A. I. (2008). Rapid Microwave Synthesis and purification of Porous Covalent Organic Frameworks. Chem. Mater. (In Press). |
[44] | Kappe, C. O. (2004). Controlled Microwave Heating in Modern Organic Synthesis. Angew. Chem, Int. Ed. 43, pp. 6250-6284. |
[45] | Kappe, C. O. and Dallinger, D. C. (2009). Controlled Microwave Heating in Modern Organic Synthesis: Highlights from 2004-2008 literature. Mol. Diveristy, 13, pp. 1- 71. |
[46] | Doru, M. Sonnawer, A. Gavyryushin, A., Knochei, P., and Bein, T. (2011). A Covalent Organic Framework with 4nm Open pores. Chem. Commun. 47, pp. 1707-1709. |
[47] | Xu, C., De, S., Balu, A. M., Ojedu, M. and Lugue, R. (2015). Mechanochemical synthesis of advanced nanomaterials for catalytic applications. Chem. Commun. SL. pp. 6698-6713. |
[48] | Das, G., Shinde, D. B., Kandambeth, S., Biswal, B. and Banerjee, R. (2014). Mechanochemical synthesis of imine, β- Ketoenamine, and hydrogen bonded imine-linked covalent organic frameworks using liquid-assisted grinding. Chem. Commun. 50, pp. 12615-12618. |
[49] | Biswal, B., Chandra, S., Kandambeth, S., Lukose, B. and Heine, T. (2013). Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. J. Am. Chem. Soc. 135, pp. 5328-5331. |
[50] | Diestmaier, J. F., Giglert, A. M., Geotz, A. J. Knchel, P. Bein, T., Lyapin, A., Reichimater, S., Hecki, W. M. and Lackinger, M. (2011). Synthesis of well-ordered COF monolayers: Surface growth of nanocrystalline precursors versus direct on-surface polycondensation. ACN. nano, 5, pp. 9737-9745. |
[51] | Zwaneveld, N. A. A., Pawlak, R., Abel, M., Catalin, D., Gigmes, D., Bertin, D. and Porte, L. (2008). Organized formation of 2D extended covalent organic frameworks at surface. J. Am. Chem. SOC. 130, pp. 6678-6679. |
[52] | Guan, C-Z, Wang, D. and Wan, L.-J (2012). Construction and repair of highly ordered 2D covalent networks by chemical equilibrium regulation. Chem. Commun. 48. pp. 2943-2945. |
[53] | Vete, J-Y., Wan, L.-J. and Wang, D. (2016). "On-Surfaces Organic Covalent Chemistry". Advances in Atom and single molecule machines. Springe Intl. Publishing. pp. 221-235. |
[54] | Spitter, E. L., Koo, B. T., Novotney, J. L. Colson, J. W., Uribe-Romo, F. J., Gutierrez, G. D., Clancy, P. and Dichtel, W. R. (2011). A 2D Covalent Organic Framework with 4.7nm pores and insight into its interlayer stacking. J. Am. Chem. Soc. 133. pp. 19416-19421. |
[55] | Spitler, E. L., Colson, J. W. Uribe-Romo, F. J., Woll, A. R., Giovino, M. R., Saldvar, A. and Dichtel, W. R. (2012). Lattice Expansion of highly oriented 2D phythalocyanine Covalent Organic Framework films. Angew. Chem. Int. Ed.. 51. pp. 2623-2627. |
[56] | Jiang, Y. Huang, W., Wang, J., Wu, Q., Wang, H., Pan, L. and Lin, A. (2014). Green, Scalable and morphology controlled synthesed nanofibrous covalent organic framework and their nanohybrids through a vapour-assisted solid state approach. J. Mater. Chem. A. Z. pp. 3201-8204. |
[57] | Rubio-Martinez, M. Batten, M. P., Polyzos, A., Carey, K. C., Mardel, J. I., Lin, K. S. and Hill, M. A. (2014). Versatile, high qualities and scalable continuous flow production of metal-organic frameworks. Sc.Rep. 4 pp. 5443-. |
[58] | Ginuno-Fabra, M., Munn, A. S., Stevens, L. A., Drage, T. C., Grant, D. M., Kashtiban, R. J., Sloan, J., Lester, E. Walton, R. J. (2012). Instant MoFs: Continuous synthesis of metal-organic frameworks hyrapid solvent mixing. Chem. Commun. 48. Pp. 10642-10644. |
[59] | Peng, Y., Wona, W. K., Hu, Z. Cheng, Y., Yuan, D., Khan, S. A. and Zhao, D. (2016). Chem. Mater. 28, pp. 5095-5101. |
[60] | Medina, D. D., Rotter, J. M., Hu, V., Dorgu, M., Werner, V., Auras, F., Markiewicz, J. T., Knowchu, P., Bein, T. (2015). Room Temperature synthesis of covalent organic framework flows through vapour-assisted conversion. J. Am. Chem. Soc. 137, pp. 1016-1019. |
[61] | Xia, L. and Liu, Q. (2016). Lithium dopping on covalent organic framework - 320 for enhancing hydrogen storage at ambient temperature. J. Solid State Chem. 244. pp. 1-5. |
[62] | Zang, Z. and Cao, D. (2012). Effect of Li dopping on diffusion and separation of hydrogen and methane in covalent organic frameworks. J. Phys. Chem. C. 116. pp. 12591-12598. |
[63] | Lin, S. Dierks, C. S., Zhang, Y. B., Komienko, N., Nicholas. E. M., Zhao, Y., Paris, A. R., Kim, D., Yaghi, O. M. and Chang, C. J. (2015). Covalent organic frameworks comprising cobalt porphygrins for catalytic Co2 reduction in water. Science, 394, pp. 1208-1213. |
[64] | Ding, S. Y., Gao, J., Wang, Q., Zhang, Y., Song, W. G. Su, C. Y. and Wang, W. (2011). Construction of covalent organic frameworks for catalysis: Pd/COF-LZU1 in SUZUKI-miyauru coupling reaction. J. Am. Chem. SOC. 133. pp. 19816-19822. |
[65] | Yang, L. and Wei, D. C. (2016) Semi Conducting Covalent Organic Framework: a type of two dimensional conducting polymers. Chi. Chem. Letter 27, pp. 1395-1404. |
[66] | Ma, L., Wang, S., Feng, X., et al. (2016). Recent Advances of covalent organic frameworks in electronic and optical applications. Chin. Chem. Lette. 27. pp. 1383-1394. |
[67] | Dalapati, S., Jin, S., Gao, J., Xu, Y., Nagai, A. and Jiang, D. (2013). An Azine-Linked Covalent Organic Framework. J. Am. Chem. Soc. 135, pp. 17310-17313. |
[68] | Feng, Q., Wang, J., Gu, S., Kaspart, R-B., Zhuang, Z., Zhang, J., Guo, H., Qiu, S. and Yan, Y. (2015) 3D porous crystalline polyimide covalent organic framework for drug delivery. J. Am. Chem. Soc. 137, pp. 8352-8355. |
[69] | Furukawa, H., and Yaghi, O. M. (2009). Storage of Hydrogen, methane, and carbondioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc. 131, pp. 8875-8883. |
[70] | El-Kaderi, H. M., Hunt, J-R., Mendoza-Cortes, J.-L., Cote, A. P., Taylor, R. E., O'keeffe, M. and Yaghi, O. M. (2007). Designed Synthesis of 3D covalent organic framework. Science, 316. pp. 668-271. |
[71] | Cote, A. P., El-Kaderi, H. M. Furukawa, H., Hunt, J. R. and Yaghi, O. M. (2007). J. Am. Chem. Soc. 129, pp. 12914-12915. |
[72] | Germain, J., Freechet, J. M. J. and Svec T. (2009). Nanoporous polymers for hydrogen storage. Small, 5. pp. 1098-10111. |
[73] | Hameed, A., Trudeau, M. and Antonelli, D. M. (2008), H2 storage materials (22KJmol-1) using organestallic Ti fragments as & -H2 binding sites. J. Am. Chem. Soc. 130, pp. 6992-6999. |
[74] | Yildirim, T. and Ciraci, S. (2005). Titanium decorated carbon nanotubes as a potential high-capacity hydrogen storage medium. Phy. Rev. Lett. 94. pp. 175501-175504. |
[75] | Durgun, E., Jang, Y. R. and Ciraci, S. (2007). Hydrogen Storage Capacity of Ti-Doped boron-nitride and B/Be-substituted carbon nanotubes. Phy. Rev. B, 76, pp. 073413-073416. |
[76] | Mulfort, K. L. and Hupp, J. T. (2009). Chemical reduction of metal-organic framework materials as a method to enhance gas uptake and binding. J. Am. Chem. SOC. 129, pp. 9604-9605. |
[77] | Marrandonakis, A., Tylianakis, E., Stubos, A. K. and Froudakis, G. E. (2008). Why Li, doping in MOF enhances H2, Storage capacity? A Multiscale theoretical study, J. Phy. Chem. C. 112, pp. 7290-72904. |
[78] | Dong, Q., Tian, W. Q., Chen, D. E. and Sun, C. C. (2009). The potential of transition metal-methylidynes as high-capacity hydrogen storage media. Intl. J. Hydrogen. Energy. 34, pp. 5444-5448. |
[79] | Choi, Y. J., Lee, J. W., Choi, J. H and Kanga, J. K. (2008). Ideal Metal-Decorated three dimensional covalent organic frameworks for reversible hydrogen storage App. Phy. Lett. 92. pp. 173102-173104. |
[80] | Garberoglio, G. (2007). Computer Simulation of the adsorption of light gases in covalent organic frameworks. Langmuir, 23, pp. 12154-12158. |
[81] | Tilford, R. W., Mugavero III S. J., Pellechria, P. J. and Lavigne, J. J. (2008). Tailoring Microporosity in covalent organic frameworks. Adv. Mater. 20, pp. 2741-2746. |
[82] | Cao, D., Lan, J., Wang, W. and Smit, B. (2009). Lithium-doped 3D Covalent organic Frameworks: High Capacity hydrogen storage materials. Angew. Chem. Int. Ed. 48, pp. 4730-4733. |
[83] | Han, S. S., Furukawa, H., Yaghi, O. M., and Goddard III, W. A. (2008). Covalent Organic Frameworks as Exceptional Hydrogen Storage Materials. J. Am. Chem. Soc. 130, pp. 11580-11581. |
[84] | Wegrzyn, J. and Gurevich, M. (1996). Adsorbent storage of Natural gas. APPI. Energy. 55. pp. 71-83. |
[85] | Menon, V. C. and Komarneni, S. (1998). Porous Adsorbents for Vehicular Natural Gas Storage: A Review. J. Porous. Mater. 5, pp. 43-58. |
[86] | Lazano-Castello, D., Alcaniz-Monge, J. De La Casa-Lillo, M. A., Cazorla, Amoros, D., Linares-Solano, A. (2002). Advances in the study of methane storage in porous carbonaceous materials. Fuel, 81, pp. 1777-1803. |
[87] | Wu, H., Gong, Q., Olson, D. H. and Li, J. (2012). Commensurate Adsorption of Hydrocarbons and Alcoholics in Microporous metal organic frameworks. Chem. Rev. 112. pp. 836-868. |
[88] | Ma, S., Sun, D., Simmons, J. M., Collier, C. D. (2007). Metal-Organic Framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake. J. Am. Chem. Soc. 130, pp. 1012-1016. |
[89] | Cavenati, S., Grand, C. A. and Rodrigues, A. E. (2004). J. Chem. Eng. Data. 49, pp. 1095 -1101. |
[90] | Babara, R., Jiang, J. W. (2008). Energy Environ. Sci. 1. pp. 139-143. |
[91] | Uribe-Romeo, F. J., Dooman, C. J., Funikawa, H., Oisak, K. and Yaghi, O. M. (2011). J. Chem. Soc. 133. pp. 11478- |
[92] | Nagai, A., Chen, X., Feng, X., Ding, X., Guo, Z. and Jian, D. (2013). Angew. Chem. Intl. Ed. S2, pp. 3770-3774 |
[93] | Uribe-Romo, F. J., Hunt, J. R., Furukawa, H., Oisak, K. and Yaghi, O. M. (2011). J. Chem. Soc. 133. pp. 11478-11481. |
[94] | Nagai, A., Chen, X., Feng, X., Ding, X., Guo, Z. and Jian, D. (2013). Angew. Chem. Int. Ed. S2. pp. 3770-3774 |
[95] | Uribe-Romo, F. J., Hunt, J. R., Furukawa, H., Kiok, C., O'Keeffe, M. and Yaghi, O. M. (2009). J. Am. Chem. Soc. 131. pp. 4570-4571 |
[96] | Neti, V. S. P. K., Wu, X., Deng, S. and Echengoyen (2013). J. Am. Chem. Soc. 133. pp. 6650- |
[97] | Li, Z., Feng, X., Zou, Y., Zhang, Y., Xia, H., Liu, X., and Mu, Y. (2014). A 2D azine-linked covalent organic framework for gas storage applications. Chem. Commun. 50, pp. 13825-13828. |
[98] | Choi, Y. J., Choi, J. H., Choi, K. M. and Kang, J. K. (2011). J. Mater. Chem. 21, pp. 1073-1073. |
[99] | Lan, J., Cao, D., Wang, W., and Smit, B. (2010). ACS. Nano 40, pp. 4225-4237. |
[100] | Kalidiadi, S. B., Yusenko, K. and Fischer, R. A. (2011). Chem. Commun. 47, pp. 8506-8508. |
[101] | Helmin, J., Helenius, J. and Paatero, E. (2001). Adsorption Equilibria of ammonia gas on inorganic and organic sorbents at 298k. J. Chem. Eng. Data. 96, pp. 391-399. |
[102] | Barrer, R. M. (1989). Clay minerals as selective and shape selective Sorbents. Pure App. Chem. 61. pp. 1903-1912. |
[103] | Doonan, C. J., Tranchemontagne, D. J., Glover, T. J., Hunt, J. R. and Yaghi, O. M. (2010). Exceptional Ammonia uptake by covalent organic framework. Nature Chemistry. 2, pp. 235-238. |
[104] | Wan, S. Guo, J., Kim, J., Ihee, H. and Jiang, D. (2008). Angew. Chem. Int-Ed. 47. pp. 8826. |
[105] | Ding, X., Chen, L. Honsho, Y., Feng, X., Saegsawang, O., Cuo, J., Saeki, A., Sekis, S., Irie, S., Nagase, S., Parasuk, V. and Jiang, D. (2011). J. Am. Chem. Soc. 133, pp. 14510-14513. |
[106] | Wang, S., Guo, J., Kim, J., Ihee, H. and Jian, D. (2009). Angew, Chew. Int. Ed. 48, pp. 5437-5442. |
[107] | Zhang, Y and Riduan, S. N. (2012), Chem. Int. Ed. 40, pp. 2 083-2094. |
[108] | Kaur, P., Hupp, J. and Nguyen, S.T. C. (2011). ACS.Cetal, 1, pp.819-835. |
[109] | Lin, S., Diercks, C.S., Zhao, Y., Paris, A. N., Kim, D., Yang, P., Yaghi, O. M. and Chang, C. J. (2015). Covalent organic frameworks comprising cobalt porphrins for catalytic CO2 reduction in water. Science.349.pp. 1208-1213. |
[110] | Khattak, A. M., Ghazi, Z.A. Liang, B., Khan, N. A. Igbal, A., Li, L., Tang, Z. (2016). A Redox-Active 2D Covalent organic framework with pyridine moeties capable of faradaic energy storage. J. Mater. Chem. 4, pp. 16312-16317. |
[111] | Claudra, S., Roy Chowdhury, D., Addicoat, M., Heine, T., Pauh, A., Banerjee, R. (2017). Molecular level control of the capacitance of two dimensional covalent organic frameworks: Role of hydrogen Bonding in Energy Storage Materials. Chem. Mater. 29. pp. 2074-2080. |
[112] | Muzler, C. R., Shen, L., Bishey, R. P., Mckone, J. R., Zhang, N., Abruno, H. D., Ditchel, W. A. (2016). Superior Charge Storage and Power Density of a Conduction polymer-modified Covalent Organic Framework. ACS.Cent. Sc., pp. 667-673. |
[113] | Chandra, S., Kundu, T., Kandambeth, S., Babarao, R., Marathe, Y., Kunji, S. M., Banerjee, R. (2014). Phosphoric acid loade to Aze (-N≡N-) Based covalent organic framework for proton conduction. J. Am. Chem. Soc. 136, pp.6570-6573. |
[114] | Xu, H., Tao, S., Jiang, D. (2016). Proton conduction in crystalline and porous organic framework, Nat. mater. 15, pp.722-726. |
[115] | Feng, Q., Wang, J., Gu, S., Kaspar, R. B., Zhuang, Z., Zheng, J., Guo, H., Qiu, S. and Yan, Y. (2015). 3D porous crystalline polyimide covalent organic framework for Drug Delivery.J. Am. Chem. Soc. 137. pp. 8352-8355. |
[116] | Liu, C., Zhang, W., Zeng, Q. and Lei, S. (2016). A photoreponssive surface covalent organic framework: surface-confined synthesis, isomerization, and controller guest capture and release. Chemistry. 22. Pp. 6768-6773. |
[117] | Ding, V-S, Dong, M., Wang, Y-W, Chen, Y-T, Wang, H. Z., Su, C-Y. and Wang, W. (2016). Thioether-Based-Fluurescent covalent organic framework for selective detection and facile removal of mercury (II). J. Am. Chem. Soc. 139, pp. 3031-3037. |
[118] | Li, J., Yang, X., Bai, C., Tian, Y., Li, B., Zhang, S., Yang, X., Ding, S. Xia, C., Tan, X., Ma, L. and Li, S. (2015) J. Colloid interface Sci. 437. Pp. 211-218. |
[119] | Zhang, S., Zhao, X., Li, B., Bai, C., Li, Y., Wang, L., Wen, R., Zhang, M., Ma, L. and Li, S. (2016). “Stereoscopic” 2D Super-microporous phosphazene-based covalent organic framework: Design, synthesis and selective sorption towards uranium at high acidic condition. J. Hazard Mater. 314, pp. 95-104. |
[120] | Chong, S.Y-L. (2016). Synthesis of Chemically Stable Covalent Organic Frameworks in Water. Scientific Commentaries, 3, PP. 391-392. |
[121] | Dariva C. G. and Galio A. F. (2014). Corrosion inhibitors-Principle, Mechanisms and Application, INTECH, http://dx.doi.org/10.5772/57255, Chapter 16. |
[122] | Ayawei Nimibofa Ekubo Tobin, Shooto David and Dikio Dixon (2017). Equilibrium, kinetic and thermodynamic studies of the uptake of copper by layered double hydroxide. Hemijska industrija. DOI: 10.2298/HEMIND150608005N. |
[123] | N.D. Shooto, N. Ayawei, D. Wankasi, L. Sikhwivhilu and E.D. Dikio. A (2016). Study of Cobalt Metal Organic Framework Material as Adsorbent for Lead Ions Removal in Aqueous Solution. Asian Journal of Chemistry; vol. 28, No. 2, 277-281. |