[1] | P. N. Prasad, J. E. Mark, and T. J. Fai, Ed. of “Polymers and Other Advanced Materials, Emerging Technologies and Business Opportunities,” V. N. Krishnamurthy, “Polymers in space environments,” (1995) 221-226. |
[2] | H. Yamaoka, “Polymer materials for fusion reactors,” Recent Trends in Rad. Poly. Chem. Adv. Poly. Sci. 105 (1993) 117-144. |
[3] | W. Barford, “Electronic and Optical Properties of Conjugated Polymers,” Oxford Univ. Press, 2013. |
[4] | L. R. Dalton, A. W. Harper, B. Wu, R. Ghosn, J. Laquindanum, Z. Liang, A. Hubbel, C. Xu, “Polymeric electro-optic modulators: materials synthesis and processing,” Adv. Mater. 7 (1995) 519-540. |
[5] | P. N. Prasad, “Polymer science and technology for new generation photonics and biophotonics,” Curr. Opin. Solid State Mater. Sci. 8 (2004) 11–19. |
[6] | C. Park, J. Yoon, and E. L. Thomas, “Enabling nanotechnology with self assembled block copolymer patterns,” Polymer 44 (2003) 6725–6760. |
[7] | N. Grassie, J. C. W. Chien, (ed) Proc. Conf. on Technique and Mechanism of Polymer Degradation and Stabilization, Elsevier, Karking, England; Polym. Degr. Stab. 25 (1989) 102. |
[8] | S. A. El-Fiki, M. S. Abd El-Wahab, M. El-Sherief, S. A. Nooh, M. A. El Fiki, “Investigation of the effect of gamma rays on optical properties of polymers,” Radiat. Phys. Chem. 47 (1996) 761-764. |
[9] | M. A. Khashan, A. Y. Nassif, S. A. El-Fiki, “Dispersion of the optical constants of cellulose triacetate irradiated by gamma rays in a wide spectral range 0.2–3 μm,” Opt. Commun. 208 (2002) 359–369. |
[10] | F. El-Diasty, M. A. Soliman, A. T. Elgendy, A. Ashour, “Birefringence dispersion in uniaxial material irradiated by gamma rays: cellulose triacetate films,” J. Optics A: Pure & Appl. Opt. 9 (2007) 247-252. |
[11] | F. El-Diasty, A. M. Bakry, “Spectroscopic and sub-bandgap optical properties of gamma-irradiated cellulose triacetate polymer,” J. Phys. D: Appl. Phys. 42 (2009) 145413-145417. |
[12] | K. Songsurang, H. Shimada, S. Nobukawa, M. Yamaguchi, “Control of three-dimensional refractive indices of uniaxially-stretched cellulose triacetate with low-molecular-weight compounds,” Euro. Poly. J. 59 (2014) 105-112. |
[13] | M. A. Khashan, A. M. El-Naggar, “A new method of finding the optical constants of a solid from the reflectance and transmittance spectrograms of its slab,” Opt. Commun. 174 (2000) 445-53. |
[14] | M. A. Peterson, K. B. Lipkowitz, “Structure and dynamics of cellulose triacetate,” J. Mol. Strut.: THEOCHEM 395–396 (1997) 411–423. |
[15] | N. S. Murthy, S. T. Correal, and H. Minor, “Structure of the amorphous phase in crystallisable polymers: Poly (Ethyleneterephtalate),”, Macromolecules 24 (1991) 1185–1189. |
[16] | G. Vancso, D. Snetvy, and I. Tomka, “Structural changes during polystyrene orientation: A study of optical birefringence and wide angle X-ray scattering,” J. Appl. Polym. Sci., 42 (1991) 1351–1359. |
[17] | M. Abdel-Baki, F. El-Diasty, "Glasses for photonic technologies," Inter. J. Opt. Appl. 3 (2013) 125-137. |
[18] | D. C. Harris, M. D. Bertolucci, “Symmetry and Spectroscopy,” (New York: Dover, 1978). |
[19] | Tsuyoshi Nakajima, Henri Groult, "Fluorinated Materials for Energy Conversion," Elsevier Ltd. 2005. |
[20] | K. Jürgensen, “Dispersion-optimized optical single-mode glass fiber waveguides,” Appl. Opt. 14 (1975) 163-168. |
[21] | N. L. Böling, A. J. Glass, A. Owyoung, “Empirical relationships for predicting nonlinear refractive index changes in optical solids,” IEEE J. Quantum Electron. 14 (1978) 601–608 (1978). |
[22] | S. W. Allison, G. T. Gillies, D. W. Magnuson, and T. S. Pagano, "Pulsed laser damage to optical fibers", Appl. Opt. 32 (1993) 291-297. |
[23] | E. Kh. Shokr, M. M. Wakkad, “Optical properties of Bi2Te2Se thin films,” J. Mater. Sci. 27 (1992) 1197-1201. |
[24] | W. G. Spitzer, H. Y. Fan, “Determination of optical constants and carrier effective Mass of Semiconductors,” Phys. Rev. 106 (1957) 882-889. |
[25] | M. M. Waakkad, “Effect of heat treatment on some of the optical parameters of Bi1.5Sb0.5Te3 thin films,” J. Phys. Chem. Solids 51 (1990) 1171-1176. |
[26] | M. DiDomenico, S. H. Wemple, “Oxygen-octahedra ferroelectrics I. Theory of electro-optical and nonlinear optical effects,” J. Appl. Phys. 40 (1969) 720-734. |
[27] | R. W. Ditchburn, “Light,” (New York: Dover, 1991). |
[28] | G. Ghosh, “Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses,” Appl. Opt. 36 (1997) 1540-1546. |
[29] | F. A. Moustafa, M. Abdel-Baki, A. M. Fayad, F. El-Diasty, “Role of mixed valence effect and orbital hybridization on molar volume of heavy metal glass for ionic conduction pathways augmentation,” Am. J. Mater. Sci. 4 (2014) 119-126. |
[30] | M. Abdel-Baki, F. A. Abdel Wahab, A. Radi, F. El-Diasty, “Factors affecting optical dispersion in borate glass systems,” J. Phys. Chem. Solids 68 (2007) 1457-1470. |
[31] | V. Dimitrov, T. Komatsu, “Classification of simple oxide: A polarizability approach,” J. Solid State Chem. 163 (2002) 100-112. |
[32] | W. C. Oliver, G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res. 7 (1992) 1564-1583. |