[1] | Wongsasuluk, P., Chotpantarat, S., Siriwong, W., Robson, M., 2012, Heavy metal contamination and health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province, Thailand, Environ Geochem Health, 36, 169-182. |
[2] | Jarup, L., 2003, Hazards of heavy metal contamination. British Medical Bulletin, 68 (1), 167-182. |
[3] | Babel, S., Kurniawan, T. A., 2004, Low-cost adsorbents for heavy metal uptake from contaminated water: a review, J. Hazard. Mater, B97, 219-243. |
[4] | Barakat, M. A., 2011, New trends in removing heavy metals from industrial waste water, Arabian Journal of Chemistry, 4, 361-377. |
[5] | Black, J., 1999, Biological performance of materials: Fundamentals of biocompatibility, Marcel Dekker, New York. |
[6] | Davis, J. R., 2003, Handbook of materials for medical devices. Materials Park, OH: ASM International. |
[7] | Hallab, N., Merritt, K., Jacobs, J. J., 2001, Metal Sensitivity in Patients with Orthopaedic Implants, J. Bone Joint Surg. Am., 83, 428-428. |
[8] | Lhotka, C., Szekeres, T., Steffan, I., Zhuber, K., Zweymuller, K., 2003, Four-year study of cobalt and chromium blood levels in patients managed with two different metal-on-metal total hip replacements, Journal of Orthopaedic Research, 21(2), 189-195. |
[9] | Haynes, D. R., Boyle, S. J., Rogers, S. D., Howie, D. W., Vernon-Robert, B., 1998, Variation in cytokines induced by patients from different prosthetic materials, Clinical Orthopaedics and Related Research, 352, 323-230. |
[10] | Geetha, M., Singh, A. K., Asokamani, R., Gogia, A. K., 2009, Ti based biomaterials, the ultimate choice for orthopaedic implants – A review, Progress in Materials Science, 54, 397–425. |
[11] | Kalita, S. J., Bhardwaj, A., Bhatt, H. A., 2007, Nanocrystalline calcium phosphate ceramics in biomedical engineering, Materials Science and Engineering C, 27(3), 441-449. |
[12] | Stoch, A., Jastrzebski, W., Dlugon, E., Lejda, W., 2005, Sol-gel derived hydroxyapatite coatings on titanium and its alloy Ti6Al4V, J Mol. Struct., 744-747, 633-640. |
[13] | Hutmacher, D. W., Schantz, J. T., Lam, C. X. F., Tan, K. C., Lim, T. C., 2007, State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective, J. Tissue Eng. Regen. Med., 1, 245-260. |
[14] | Poinern, G. E. J., Brundavanam, R., Le, X., Nicholls, P. K., Cake, M. A., Fawcett, D., 2014, The synthesis, characterisation and in vivo study of a bioceramic for potential tissue regeneration applications, Scientific Reports, 4, 6235, 1-9. |
[15] | Cornell, C. N., Tyndall, D., Waller, S., Lane, J. M., Brause, B. D., 1993, Treatment of experimental osteomyelitis with antibiotic-impregnated bone graft substitute, J Orthop Res., 11(5), 619-626. |
[16] | Baro, M., Sanchez, E., Delgado, A., Perera, A., Evora, C., 2002, In vitro-in vivo characterisation of gentamicin bone implants, J Controlled Release, 83, 353-364. |
[17] | Ginebra, M. P., Traykova, T., Planell, J. A., 2006, Calcium phosphate cements as bone drug-delivery systems: a review, J Controlled Release, 113, 102-110. |
[18] | Schnieders, J., Gbureck, U., Thull, R., Kissel, T., 2006, Controlled release of gentamicin from calcium phosphate-poly (lactic acid-co-glycolic acid) composite bone cement, Biomaterials, 27, 4239-4249. |
[19] | Monteil-Rivera, F., Fedoroff, M., 2002, Sorption of inorganic species on apatite’s from aqueous solutions: In Encyclopaedia of surface and colloid Science, Marcel Dekker, New York. |
[20] | Tanaka, H., Futaoka, M., Hino, R., Kandori, K., Ishikawa, T., 2005, Structure of synthetic calcium hydroxyapatite particles modified with pyrophosphoric acid, J. Colloid. Interface. Sci., 283, 609-612. |
[21] | Poinern, G. E. J., Brundavanam, R., Le, X., Djordjevic, S., Prokic, M., Fawcett, D., 2011, Thermal and ultrasonic influence in the formation of nanometre scale hydroxyapatite bio-ceramic, International Journal of Nanomedicine, 6, 2083-2095. |
[22] | Poinern, G .E. J., Brundavanam, R., Le, X., Fawcett, D., 2012, The mechanical properties of a porous ceramic derived from a 30 nm sized particles based powder of hydroxyapatite for potential hard tissue engineering applications. Am. J. Biomed. Eng., 2, 278-286. |
[23] | Klug, H. P., Alexander, L. E., 1974, X-ray diffraction procedures for poly-crystallite and amorphous materials. 2nd Ed., New York, Wiley. |
[24] | Barrett, C. S., Cohen, J. B., Faber, J., Jenkins, J. R., Leyden, D. E., Russ, J. C., Predecki, P. K., 1986,Advances in X-ray analysis, Vol. 29, New York: Plenum Press. |
[25] | Danilchenko, S. N., Kukharenko, O. G., Moseke, C., Protsenko, I. Y., Sukhodub, L. F., Sulkio-Cleff, B., 2002, Determination of the bone mineral crystallite size and lattice strain from diffraction line broadening, Cryst. Res. Technol., 37(11), 1234-1240. |
[26] | Ramesh, S. T., Rameshbabu, N., Gandhimathi, R., Nidheesh, P. V., Srikanth Kumar, M., 2012, Kinetics and equilibrium studies for the removal of heavy metals in both single and binary systems using hydroxyapatite, Appl. Water Sci., 2, 187–197. |
[27] | Evisa, Z., Yilmazb, B., Ustac, M., Aktugc, A. L., 2013, X-ray investigation of sintered cadmium doped hydroxyapatites, Ceramics International, 39, 2359–2363. |
[28] | Mobasherpour, I., Salahi, E., Pazouki, M., 2011, Removal of divalent cadmium cations by means of synthetic nano-crystallite hydroxyapatite, Desalination, 266, 142–148. |
[29] | Wang, Y., Zhang, S., Wei, K., Zhao, N., Chen, J., Wang, X., 2006, Hydrothermal synthesis of hydroxyapatite nano-powders using cationic surfactant as a template. Mater Lett., 60(12),1484-1487. |
[30] | Panda, R. N., Hsieh, M. F., Chung, R. J., Chin, T. S., 2003, FTIR, XRD, SEM and solid state NMR investigations of carbonate-containing hydroxyapatite nano-particles synthesised by hydroxide-gel technique, J. Physics and Chemistry of Solids, 64(2), 193-199. |
[31] | Lagergren, S., 1893, Zur theorie der sogenannten adsorption gelöster stoffe, Kungliga Svenska Vetenskapsakademiens, Handlingar, 24, 1-39. |
[32] | McKay, G., Ho, Y. S., 1999, Pseudo-second order model for sorption processes, Process Biochem, 34, 451-465. |
[33] | Weber, W. J., Morris, J. C., 1963, Kinetics of adsorption on carbon from solution, J. Sanit. Engng. Div. Am. Soc. Civ. Engrs., 89, 31-60. |
[34] | Ramana, D. K. V., Jamuna, K., Satyanarayana, B., et al., 2010, Removal of heavy metals from aqueous solutions using activated carbon prepared from Cicer arietinum, Toxicological and Environmental Chemistry, 92, 1447-1460. |
[35] | Kubilay, A., Garkan, R., Savran, A., et al., 2007, Removal of Cu(II), Zn(II) and Co(II) ions from aqueous solutions by adsorption onto natural bentonite, Adsorption, 13, 41-51. |
[36] | Cheung, C. W., Porter, J. F., McKay, G., 2002, Removal of Cu(II) and Zn (II) ions by sorption onto bone char using batch agitation, Langmuir, 18, 650-656. |
[37] | Moreno, J. C., Gómez, R., Giraldo, L., 2010, Removal of Mn, Fe, Ni and Cu Ions from wastewater using cow bone charcoal, Materials, 3, 452-466. |
[38] | Putra, W. P., Kamari1, A., Yusoff, S. N. M., et al., 2014, Biosorption of Cu(II), Pb(II) and Zn(II) ions from aqueous solutions using selected waste materials: Adsorption and characterisation studies, Journal of Encapsulation and Adsorption Sciences, 4, 25-35. |
[39] | Wang, Y. J., Chen, J. H., Cui, Y. X., et al., 2009, Effects of low molecular weight organic acids on Cu (II) adsorption on hydroxyapatite nanoparticles, J Hazard Mater, 162, 1135-1140. |